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Abstract—Polar decoders such as successive-cancellation and
successive-cancellation list decoders are limited by their sequen-
tial nature, which leads to a linear increase in latency with the
codeword length. Heuristic based decoders such as quantum an-
nealing have been proposed to overcome this limitation. However,
these decoders have shown poor performance when decoding
polar codes with more than eight bits.

In this paper, we developed new meta-heuristic based polar de-
coder, called xSA, which uses a new receiver constraint modeled
by the binary cross-entropy function. We also propose a method
to determine the weights used in a quadratic unconstrained
binary optimization (QUBO) function.

The polar code is assumed to have been sent across an AWGN
channel and we conducted our experiments and simulations
using PyQUBO and dwave-neal. Our results show that xSA
is able to decode codes of length 16 and 32 with a near-ML
FER performance, presenting itself as a promising alternative to
traditional polar decoders for real world applications and next
generation cellular communications.

I. INTRODUCTION

OLAR codes are capacity-achieving error-correcting

codes with low-complexity encoding and decoding algo-
rithms [1]. They have been incorporated into the development
of the 5G wireless communication standard [2].

Polar codes achieve their superior performance by polariz-
ing the channels, i.e., transforming a set of independent and
identically distributed (i.i.d.) channels into a set of highly
reliable and highly unreliable channels. This polar trans-
formation enables the use of simple and efficient decoding
algorithms, such as the successive cancellation (SC) decoder
and successive cancellation list (SCL) decoder [3], [4]. How-
ever, as SC and SCL decoders make decisions sequentially,
their latency grows linearly with the codeword length. As
an alternative paradigm for next generation communications,
optimization-based meta-heuristic decoders (MHD) may of-
fer a high decoding-performance and lower latency solution.
MHD can be implemented with generalized hardware that
solves optimization problems expressed in a standard form
with code-specific constraints, as shown in Fig. 1.

Recently, a meta-heuristic polar decoder using quantum
annealing (QA) combined with classical methods, called the
Hybrid Polar Decoder (HyPD) was proposed in [5]. QA is
a quantum technique used to solve optimization problems,
which leverages quantum mechanics to search for the optimal
solution among numerous possibilities efficiently.

The QA process involves encoding the problem into a
Hamiltonian, which is a mathematical representation of the
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Fig. 1. A next generation (Next-G) meta-heuristic decoder architecture.
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Fig. 2. xSA FER performance for a polar code of length N = 16 and rate
R = 0.5, using num_reads = 300.

energy levels of a quantum system. The quantum system is
then initialized in a superposition of all possible states and
allowed to evolve through time.

The system settles into its ground state, which corresponds
to the optimal solution. The search process is aided by quan-
tum tunneling, which allows the system to overcome energy
barriers and reach lower energy levels.

While HyPD has shown that it is possible to use meta-
heuristic optimizers to build a polar code decoder on a
multi-path Rayleigh fading channel, the decoder is limited
to codes of length N = 8; with longer codes showing poor
performance. This has been attributed to the accumulation of
QA integrated control error (ICE) [5] [6].

Another meta-heuristic optimization method is simulated



annealing (SA). SA is a probabilistic technique that approxi-
mates the global optimum of a given function. SA mimics the
process of annealing in metallurgy, where a material is heated
and then slowly cooled to increase the size of its crystals and
reduce their defects. Simulated annealing starts with a high
temperature and slowly cools down to a low temperature. At
each temperature, the algorithm generates a random neighbor
of the current solution and accepts it if it is better than the
current solution. Otherwise, it accepts it with a probability
that decreases as the temperature decreases. This process is
repeated until the temperature reaches a sufficiently low value.

We used SA to extend the work of [5] to develop a polar
decoder for a codeword of length N = 16 at R = 0.5
over an Additive White Gaussian Noise (AWGN) channel.
We observe the same poor performance suggested in [5], as
shown in Fig 2. Instead of attributing this to accumulated
errors in QA, we suggest that the poor performance is mainly
caused by the rigidity of the distance metric function used
in the receiver constraint, which prevents the optimizer from
escaping a local minimum. Other works such as [7] have
also proposed the use of QA to decode LDPC codes, but
both works use the same distance metric function. Hence,
in this paper we use a binary cross entropy loss function
[8] to develop a cross-entropy SA polar decoder, which we
call xSA, and were able to achieve near-maximum likelihood
(near-ML) performance for polar codes of length N = 16
with rate R = 0.5. We were able to further demonstrate that
xSA was able to decode codewords of length N = 32 at rates
R € {0.375,0.5,0.8125}. In addition, we propose a method to
determine the weights required for our optimization function
to further prevent our overall optimization function from being
stuck in a local minimum.

In summary, this paper makes the following contributions:

o We developed a SA polar decoder for N = 16 with rate
R = 0.5 with near ML performance and aim to extend
it to decode polar codes of length N = 32 for rates
R € {0.375,0.5,0.8125}.

o We propose replacing the distance metric loss function
with a binary cross-entropy loss function.

o We implemented a method for rough approximation of
weights tuning for a SA polar decoder optimization
function.

II. PRELIMINARIES
A. Polar codes

A polar code P(N,K) with length N and dimension
K can be constructed by taking a message word u =
[wo, U1, ..., un—1], containing K information bits and a set
of N — K frozen bits and applying a linear transformation
x = uG®", where X = [zg,%1,...,2x_1] is a codeword,
G®" is the n-th Kronecker power of the polarizing matrix

G = G ?) and n = log, N. The location of the frozen

bits (assumed here to have value 0) are known to both the
encoder and decoder. The rate of the code is R = K/N.

For example, the encoding process x = uG®? for an input
vector u = [ug, U1, Uz, Uz, Ug, Us, Ug, u7] With length N = 8
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Fig. 4. Cost function design for xSA and HyPD sub-block P(8,4).

can be seen in Fig. 3. The codeword x is then modulated and
sent over a channel.

When sent over an AWGN channel, noise n ~ N(0,0?),,
is added to the transmitted codeword and the receiver receives
the signal r = [rg,71,...,7N-1]:

r=x-+n, (1)

where o2 is the noise variance.



B. Optimization objective function

The objective function for our SA polar decoder takes
the form of a Quadratic Unconstrained Binary Optimization
(QUBO) function. A QUBO function can be described as
follows:

T—-1T-1
Houpo = Z Z Qij4:95, 2
i=0 j=0
where ¢;,q; € {1,0}. Q;; € R are coefficients used to
penalize or reward a solution. 7' is the total number of
variables in the optimization function.

The QUBO function is equivalent to the Ising model [9]
and can solved using a quantum annealing (QA) device.

Take q = [go,41,--.,97—1] to be a particular solution,
which corresponds to the input bits u = [ug, u1, ..., un—1];
F to be the set of frozen bits; T to be the set of nodes in the
polar code’s binary tree and a; to be slack variables used for
calculation, a; € {0,1}.

In HyPD [5], the objective function comprises three con-
straints expressed as penalties added to the QUBO function,
namely the Node constraint (Cy), the Frozen constraint (Cr),
and the Receiver constraint (Cr). The Node constraint ensures
that the decoded codeword is a polar code. The Frozen con-
straint ensures that frozen bits conform to the set of frozen bits
in F. The Receiver(Cr) constraint ensures that decoded code
word does not deviate too much from the received information.
The optimization function is:

@ =Wy D Cn(T)+Wr Y Crlq)

TeT q,EF
+Wr Y Crlg:),

qi€q

3)

where the optimization problem is to find the values q that
minimize f(q):

arg mqin{f(q)}. 4

The weights Wy, W and Wpx determine the importance
of each constraint in the optimization problem. The weights
in HyPD [5] are set to Wy =1, Wrp =4 and Wr =2 — R.
The overall cost function design can be seen in Fig. 4.

1) Encoding constraint: This constraint models the XOR
operations of the Polar encoder. Take er as the set of all
XOR operations performed at node 7. We can then define
the constraint as follows,

Cn = Z (¢i + 45 — a1 — 2qk41)* &)

(gi,q5)€er

where qj, qr+1 are slack variables and each slack variable
is only introduced once. Since Cn(T") is the sum-of-squares
its minimum energy (i.e., Cy(T) = 0). In addition, the sum
g; + g; must be equal to the sum gqr + 2qi41. As all the
variables are binary, this models the XOR operation of ¢; and

95> Gk = Gi D qj-

2) Frozen constraint: As the frozen bits are always zero,
we can define the frozen constraint as follows,

Cr(qi) =q (6)

Cr is minimum when all the frozen bits position in a solution,
q is zero.

3) Receiver constraint: For AWGN with noise variance o
we can compute the probability that received information, r; =
1 as:

1

o2

Pr(¢; = 1|r;) = 7

In HyPD, the receiver constraint is defined using a distance
metric as follows,

Cr(g:) = (¢; — Pr(q; = 1|ry))?, (®)

where Cr is minimized when ¢; € {0,1} has a greater
probability of being the corresponding bit at the encoder.
Hence, this constraint ensures that the solution does not deviate
too much from the received information.

III. METHODOLOGY
A. Distance metric vs Binary Cross Entropy

In our work, we introduce a new receiver constraint and
replace the distance metric, defined in Equation (8), with a
binary cross entropy function as follows,

Cr(qi) = —qilog Pr(q; = 1|ry)
— (1 —¢;)logPr(¢g; =0|r;)

where the probability function is defined in Equation (7). The
new optimization cost function design can be seen in Fig. 4.

Similar to the distance metric, the binary cross entropy func-
tion is minimized when ¢; € {0, 1} has a greater probability of
being the corresponding bit at the encoder. In Fig. 5, the binary
cross entropy function and distance metric is first normalized
for a received symbol r; € [-2,2] and 0® = 0.5. Next,
the normalized cost, C for ; € [=2,0] is plotted as it is
symmetrical about the origin.

From Fig. 5, we can observe that when sufficient noise is
added to the transmitted symbol, r;, the distance metric would
introduce a higher cost compared to the binary cross-entropy
function.

Given an example shown in Fig. 6, for a certain ¢; = 0,
the symbol, z; = +1 is transmitted and during transmission,
a noise of, n; = —1.5, is added to the received symbol,
r; = —0.5, which corresponds to a bit flip. In case 1, the
distance metric and binary cross-entropy would both view
q; = 1 as the more optimum solution. However, in case 2, in
order to select the right solution of ¢; = 0, the distance metric
would introduce a higher cost of 0.78 compared to the binary
cross-entropy function, 0.27. Thus, it is less probable for the
MHD to explore a sub-optimum solution of g; = 0 when the
constraint is formulated using the distance metric compared
to binary cross-entropy function. This limits the MHD search
space for a correct solution and causes the MHD to be stuck
in a local minimum with the wrong solution. Hence, from
our analysis, we can conclude that the distance metric is not
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Fig. 5. Comparison of the cost introduced by distance metric (DM) vs binary
cross-entropy (BCE) for r; € [—2, 0] normalized in the range r; € [—2,2]
and 02 = 0.5. The symbol mapping here corresponds to 1 — —1 and
0— +1

suitable for the receiver constraint and likely accounts for
HyPD poor performance.

B. Coarse parameter tuning

When developing our SA decoder, we realized that depend-
ing on the number of variables, it is possible for a constraint
to dominate other constraints of higher weight. This results in
certain important constraints to be continuously violated.

For example, take a codeword of N = 8, and we would
like the receiver constraint to have a higher importance in
the decoding process compared to the encoding constraint.
We can then set W = 1.5 and Wxr = 2. However, as the
encoding constraint has at least 14 variables compared to the
8 variables in receiver constraint, with the highest cost of the
encoding constraint and receiver constraint to be 21 and 16
respectively. Thus, the QA deoder would place more important
to the encoding constraint instead of the receiver constraint.

To prevent constraints from dominating each other. We
proposed that the initial weights to be set as follows,

1
Wy = 10
N max Y gy On(T) (19)
1
Wp = 11
F max ) o = Cr(¢) (1D
W = ! (12)

max ) . Cr(¢)

Further fine-tuning can be done later, to increase the impor-
tance of each constraint.

IV. EXPERIMENTAL RESULTS

In our experiments, the polar codes are constructed by
Gaussian approximation [10] at 5dB. The polar codes are
then assumed to have been sent across an AWGN channel
decoded using a polar code decoder. The polar decoders are
implemented on an Intel E5-2683 processor and both xSA and
HyPD are implemented in python with PyQUBO and dwave-
neal libraries.
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Fig. 6. Illustration of meta-heuristic decoder(MHD) decision process. Case
1 represents a wrong solution, while case 2 represents the correct solution. In
case 1 the receiver constraint cost is lower but by compromising the receiver
constraint cost slightly we can find a lower overall cost.

PyQUBO is a python library that allows the user to for-
mulate a QUBO problem and solve it using a variety of
solvers. Dwave-neal [11] is a SA python library that is
used to approximate Boltzmann sampling or meta-heuristic
optimization. Within each iteration of the SA, each variable
in the Ising model is updated once in a fixed order per point
in a sequence determined by the Metropolis-Hastings update.

The ML bounds are generated using sphere decoding [12]
and the SCL decoder is implemented according to [13].

Fig. 2 shows the FER performance of polar code P (16, 8).
num_reads represents the number of iterations of the SA
algorithm. At P(16,8) xSA is able to achieve near-ML
performance, while HyPD SA decoder is unable to achieve
the ML bound.

We then extended the length from N = 16 to N = 32 and
compared the performance of xSA and HyPD. Fig. 7 shows the
FER for P(32,12), P(32,16) and P(32,26). At P(32,12),
as shown in Fig. 7(a), xSA was able to achieve near-ML
performance. XSA was able to stay close to the ML bound
at P(32,16) but its performance degrades at P(32,26), as
shown in Fig. 7(c). This is likely due to the lack of frozen bits
for error correction, making it difficult for the meta-heuristic
optimizers to solve the problems correctly.

However, for P(64,32) we notice that xXSA was not able
to achieve ML performance. This is likely due to the higher
number of variables (448), compared to 192 variables for
P(32,16), resulting in higher accumulated error. More work
needs to be done to ensure that MHD can be directed to
explore the right search space.

V. CONCLUSION

In this paper, we proposed a method to determine the
weights required for a meta-heuristic decoder that minimizes
the QUBO function and an alternative meta-heuristic polar
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decoder, xSA. xSA introduces a binary cross-entropy receiver
constraint. We have shown that xSA is able to decode polar
codes with N 16 and N 32 and achieve near-ML
performance, outperforming other works such as HyPD and
SC decoders on an AWGN channel.

While we note that QA and SA are not the same, we believe
that the comparison with HyPD is still valid as both methods
use meta-heuristic optimization. The optimal solution should
not be impacted by the choice of the solver. Also, xSA can
be easily extended to be solved using QA as it’s objective
function is in QUBO form.

Finally, future advancements in quantum technology can
make it a reality for meta-heuristic decoders to be used in
real-world applications and next generation cellular wireless
traffic channels.

Our future work includes reducing the number of variables
required for meta-heuristic based polar decoders, to help
reduce accumulated errors. This may allow us to decode polar

codes at higher code length.
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