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Abstract—Guessing Random Additive Noise Decoding
(GRAND) excels at decoding high-rate codes but struggles to
decode low-rate codes with reasonable complexity. Ordered
Statistics Decoding (OSD) specifically excels in decoding short
codes irrespective of rates; however, OSD necessitates the use
of Gaussian elimination which introduces additional time,
space and computational complexity. Partial Ordered Statistics
Decoding (POSD) was proposed to reduce the time, space,
and computational complexity of OSD; however, the current
partition-based POSD has poor decoding performance since it
does not generate test error patterns across partitions. In this
paper, we propose to improve the decoding performance of
POSD by incorporating test error patterns inspired by GRAND
methods. This work offers a trade-off between performance
and complexity compared to existing decoders such as GRAND
and OSD. We enhance POSD by optimizing the scheduling of
Test Error Patterns (TEPs) and show that our technique can be
applied to any code in a standard form. At a target BER 10−4

with eBCH (128,64) the enhanced error patterns achieve more
than 0.6 dB gain in performance compared to the POSD with
partition-based error patterns. Moreover, at a target frame error
rate of 10−5, POSD uses 10× less binary operations compared
to GRAND when decoding eBCH (128,64) and RLC(128,64)
codes. With BCH (127,29) and RLC(128,32), at a target frame
error rate of 10−2, POSD with enhanced error patterns with a
maximum number of queries (MQ) of 104 achieves up to a 2
dB gain to its GRAND equivalent which is using 107 maximum
number of queries.

Index Terms—Ordered Statistics Decoding, Guessing Random
Additive Noise Decoding, mMTC, Partial Ordered Statistics
Decoding

I. INTRODUCTION

Massive machine-type communication (mMTC) and ultra-
reliable and low-latency communication (URLLC) are two
use-cases of the 5G communication system [1]. With new
applications such as wireless factory automation and wide-
area disaster monitoring, critical mMTC [2], a new use case
that is a hybrid of mMTC and URLLC, is set to emerge in the
near future, posing new design challenges for wireless systems
beyond 5G. In addition to necessitating strict limits on the
power used by the decoder in the mMTC use case, critical
mMTC requires high reliability which is usually associated
with using short low-rate codes and a high-performing low-
power code decoder for these codes.

Guessing Random Additive Noise Decoding (GRAND) [3]
has been recently proposed as a versatile decoder that can
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Fig. 1. FER performance of POSD and GRAND with various error patterns
on RLC (128,32) (represented by solid lines) and BCH (127,29) (represented
by dashed lines). If unspecified, the maximum number of queries used with
these methods is 104.

decode any short and high-rate code with some variants ap-
proaching the decoding performance of Maximum Likelihood
(ML) decoding [4]. One of the most notable soft decision
variants of GRAND is ORBGRAND [5] which generates its
test error patterns in increasing logistic weight order. Several
improvements of the sequence of generation of the test error
patterns were suggested in [6] where an improved logistic
weight order penalizes queries based on their Hamming weight
is discussed. Additionally [7] proposes the use of test error
patterns based on an empirical analysis of the error patterns
that appear on an AWGN channel. Despite GRAND’s poten-
tial, the brute-force process of generating Test Error Patterns
(TEPs) on the codeword bits and the use of a syndrome check
to verify codeword membership results in unacceptably high
complexity for low-rate codes.

An alternative to GRAND is Ordered Statistics Decoding
(OSD) [8], [9] which is a code-agnostic near-ML decoder
that leverages the soft channel information to improve on the
decoding performance. OSD uses Gaussian elimination with
any code of any code rate which results in a time, space, and
computational complexity penalty for short-packet low-power
applications.



Gaussian elimination in OSD can be avoided by using
Partial OSD (POSD) which necessitates a generator matrix in
standard form [10], [11]. The current implementation of POSD
has several limitations. First, the length of the segments and
the Hamming weight of the TEPs of the partition based POSD
must be determined empirically through extensive computer
simulations. Second, the partition based POSD does not use
TEP candidates generated across partitions, resulting in poor
decoding performance.

In this work, we propose to enhance the decoding perfor-
mance of POSD by using a new scheduling of TEPs inspired
by GRAND methods [5]–[7]. We demonstrate that in order to
attain the same decoding performance as POSD with enhanced
error patterns, GRAND uses 1698× → 7× more binary
operations per frame with eBCH (128,64) and RLC(128,64).
Moreover, with BCH (127,29) and RLC(128,32), POSD with
enhanced error patterns with a maximum number of queries
(MQ) of 104 can outperform its GRAND equivalent which
uses 1000× the maximum number of queries, as depicted
in Fig. 1. Our improved POSD with modified error patterns
can operate with codes of varying rates and codebooks and
for the same performance, can achieve lower computational
complexity compared to GRAND on low-rate codes.

The rest of this paper is organized as follows: The prelimi-
naries for this work are explained in Section II. The proposed
POSD is presented in Section III, while the numerical simu-
lation results are presented in Section IV. Finally, in Section
V, concluding remarks are made.

II. PRELIMINARIES

A. Notations and Definitions

Matrices are denoted by a bold upper-case letter (M ), while
vectors are denoted with bold lower-case letters (v). The
number of k-combinations from a given set of n elements
is noted by

(
n
k

)
. All the indices start at 1. The i’th element

of vector v is represented as vi. The subvector composed
of elements i to j from vector v is represented as vi:j . For
this work, all operations are restricted to the Galois field with
2 elements, noted F2. Furthermore, we restrict ourselves to
(n, k) linear block codes, where n is the code length and k is
the code dimension. Throughout this analysis and simulations,
we assume Binary Phase Shift Keying (BPSK) modulation
over an Additive White Gaussian Noise (AWGN) channel.

B. Definitions

Definition 1: A linear block code is a linear mapping g :
Fk
2 → Fn

2 . To characterise any linear block code, there exists a
k×n matrix G called generator matrix. The generator matrix
is in standard form if it is represented as G = [Ik|P ] where
Ik is the identity matrix of size k× k and P is an k× n− k
matrix.

Definition 2: Hard Demodulation thresholds the received
channel signals :

ŷi = 0 ; yi > 0. (1)
ŷi = 1 ; yi < 0. (2)

Algorithm 1: Partial Ordered Statistics Decoding
Input : y, r, G, n
Output: û

1 Wmin ←∞ ;
2 ind← Sorted Indices(y1:k) ;
3 ŷ ← Hard Demodulate(y) ;
4 TEPs← Generate Test Error Patterns(ind) ;
5 c0 ← ŷ1:k ×G ;
6 for e in TEPs do
7 if WHD(e, r1:k) < Wmin then
8 z ← e×G ;
9 v ← z ⊕ c0 ;

10 if WHD(v, r1:n) < Wmin then
11 u∗ ← e⊕ ŷ1:k ;
12 Wmin ←WHD(v, r1:n) ;
13 end
14 end
15 end
16 return u∗;

Definition 3: The reliability of a bit (ri) of the received
channel signal y is the absolute value of the log-likelihood
ratio associated with that bit where ci is the encoded codeword
bit at transmitter side:

ri =

∣∣∣∣ln(
Pr(ci = 0|yi)

Pr(ci = 1|yi)

)∣∣∣∣ . (3)

Given this definition of reliability, it can be observed that it is
always a non-negative quantity.

Definition 4: The WHD of a binary vector v of length n
is the sum of the reliability of the nonzero elements. The
probability of correct decoding is a decreasing function of
WHD [12]:

WHD(v, r) =

n∑
i=1

ri ∗ vi = r · v. (4)

The WHD of a vector can also be represented as the sum of
the WHD of its subvectors:

WHD(v, r) = WHD(v1:k, r1:k) +WHD(vk+1:n, rk+1:n).
(5)

III. PARTIAL ORDERED STATISTICS DECODING

In this section, we will introduce the POSD algorithm and
the TEPs that can be used with it. The complexity of POSD
is evaluated and compared to the complexity of GRAND.

A. Algorithm Description

The POSD algorithm, presented in Algorithm 1, is a list-
based decoding method that is code agnostic and does not
require the use of Gaussian elimination. The algorithm begins
by sorting the first k bits of the received channel signal in
ascending order of bit reliability (Line 2). Then, the ordered set
of indices which are sorted by increasing reliability, denoted
by ind, can be utilized to generate the TEPs (Line 4). The
various methods of generating the TEPs will be discussed in
Section III-B in greater detail.



The algorithm proceeds to a re-encoding phase in which the
test error patterns are re-encoded using the generator matrix
in standard form to generate z (Line 8). This is followed
by XOR-ing the result of re-encoding the error signal to the
result of re-encoding the first k bits from the channel signal
to obtain the current codeword estimate v (Line 9). If the
resulting codeword estimate has a WHD that is less than the
lowest WHD of the previously queried codewords (Wmin)
(Line 10), the algorithm updates the optimal message (u∗)
and the current Wmin (Line 11-12). Once all test error patterns
have been queried, the algorithm returns the optimal message
as the decoded output (Line 16).

B. Error Patterns

This section will discuss the different test error patterns that
will be used in our analysis. It is important to note that, to
the best of our knowledge, only the Hamming weight order
and a partition-based order has been used with POSD. The
contribution of this work is the analysis of the performance of
the logistic weight order, improved logistic weight order and
empirical order TEPs with POSD:

1) Hamming Weight Order (HW): The HW order entails
generating test error patterns by increasing Hamming weight
defined in (6).

hw(e) =

n∑
i=1

ei. (6)

These error patterns can be generated without any knowledge
of the soft channel information.

2) Logistic Weight Order (LW): The LW order [5] generates
test error patterns by increasing logistic weight using the
ordered set of indices. The logistic weight of any pattern can
be calculated using (7).

lw(e) =

n∑
i=1

indi × ei. (7)

For example, the error pattern which results in flipping the
least reliable bit has a logistic weight of 1 while the error
pattern which results in flipping the three least reliable bits has
a logistic weight of 1+2+3 = 6. Highly efficient parallelized
hardware implementations using integer partitioning can be
used to produce these TEPs as in [13], [14].

3) Improved Logistic Weight Order (ILW): The improved
logistic weight order [6] generates TEPs by increasing im-
proved logistic weight. The improved logistic weight of any
pattern can be calculated using (8) where im represents the
ordered vector of indices of the nonzero entries of the error
pattern (im = ind[e[i] == 1]):

ilw(e) =

hw(e)∑
i=1

imi × i. (8)

4) Empirical Error Patterns (EEP): Similar to what was
discussed in [7], TEPs can be generated based on their
likelihood of occurring. To that end, after sorting the received
channel signal in increasing reliability, we ran 109 Monte-
Carlo simulations at Eb

N0
= 7 dB and collected the most

TABLE I
COMPUTATIONAL COMPLEXITY OF POSD AND ORBGRAND

Decoder Operation BOPs FLOPs
POSD Sorting k log(k)

Re-Encoding (k+(2k−1)(n−k))Q
WHD Calculation 5 ∗ q ∗ a ∗Q

ORBGRAND Sorting n log(n)
Syndrome Calculation (2n− 1)(n−k)Q
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Fig. 2. BER performance of Various Error Patterns on eBCH (128,64).
Maximum Number of Queries =135

frequent TEPs that occur on the sorted channel signal. This set
of TEPs is stored in memory and used with either GRAND,
as in [7], or with POSD for the entire range of Eb

N0
. For a

high MQ, the storage requirements of the EEP TEPs become
a large concern.

5) Partion-based Error Patterns (I1|K1, I2|K2): The orig-
inal version of POSD with partition-based error patterns [10]
sorts the received channel signal by increasing reliability and
it takes into account two least reliable partitions. This method
involves optimizing the size of the first partition (K1), the
size of the second partition (K2), the maximum Hamming
weight of the TEP in the first partition (I1), and the maximum
Hamming weight of the TEP in the second partition (I2). This
method flips up to I1 bits in the first partition (ind1:K1 )
and then goes on to flip I2 bits in the second partition
(indK1+1:K1+K2

). Hence, unlike the aforementioned TEP
schedulings, it does not generate error patterns across the
partitions.

C. Complexity Analysis

Table I shows the computational complexity of the major
steps in GRAND and POSD. The computational complexity
can be discussed in terms of Binary Operations (BOPs),
Floating Point Operations (FLOPs) and number of queries per
frame (Q).

FLOPs: Contrary to the soft-input variants of POSD, which
necessitate sorting only the first k received bits, the soft-
input variants of GRAND mandate sorting the reliabilities of
the n received bits in increasing reliabilities which results in
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Fig. 3. FER performance of Various Decoders on RLC and BCH (127,85). Maximum Number of Queries= 104 with POSD and ORBGRAND and 4-bit
quantization is used. Dashed lines correspond to BCH(127,85) and solid lines correspond to RLC(127,85).

a computational complexity of nlog(n) FLOPs/Frame with
GRAND compared to klog(k) FLOPs/Frame with POSD.

BOPs: Guessing Random Additive Noise Decoding
(GRAND) [3], [5] methods only use a syndrome calculation
per query and compare the resulting syndrome to the 0 vector
resulting in (2n − 1)(n − k) ∗ Q BOPs/Frame. Alternatively,
POSD determines the optimality of the candidate codeword
through WHD calculations. To find the binary operations used
to calculate the WHD, we first quantize the scaled reliabilities
(σ

2

2 ∗ r) where σ is the standard deviation of the noise on an
AWGN channel. After quantization, we calculate the complex-
ity of the WHD calculation as 5 ∗ q ∗ a where 5 corresponds
to the number of binary operations used by a full adder, q
is word size, and a is the number of additions. For example,
assuming a 4-bit quantization and n−1 additions per candidate
codeword, the complexity of WHD calculation would equate
to 20 ∗ (n− 1) ∗Q BOPs/Frame. Additionally, since the other
major POSD step is the re-encoding stage, we mandate the
use of a Generator matrix in standard form. As such, we only
generate the parity bits in Line 8 of Algorithm 1 which results
in a re-encoding complexity of (k + (2k − 1) × (n − k))Q.
For example, with 4-bit quantization and with eBCH (128,64),
the complexity of one query with POSD is 10752 BOPs for
POSD and 16320 BOPs for GRAND.

To further reduce the average computational complexity of
POSD, we first calculate the WHD between the error pattern
and the first k bits of the received channel signal before the
re-encoding phase [12]. If the resulting quantity is greater than
the current minimum WHD, the re-encoding step is skipped
as it is impossible that the resulting re-encoded codeword has a
lower WHD. Additionally we use an early stopping criterion
to terminate decoding when WHD = 0 since WHD is non-
negative.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the decoding performance and
complexity of GRAND and POSD with enhanced error pat-
terns on BCH and RLC codes. Unless otherwise specified, the
maximum number of queries is set at 104 with both GRAND
and POSD methods.

Fig. 2 shows the Bit Error Rate (BER) performance of
POSD with different error patterns on extended BCH code
(128,64) with a maximum number of queries of 135. We
can clearly see that the POSD with EEP, ILW and LW error
patterns achieve around 1.2 dB gain at a BER of 10−4

compared to the POSD with error patterns in HW order.
Compared to the partition based method [10], a 0.6 dB gain
at a target BER of 10−4 can be seen with these improved
EEP, ILW and LW error patterns compared to using POSD
(2|6, 3|10). This gain in performance with EEP, ILW and LW
TEPs can be attributed to the generation of error patterns
across partitions.

Fig. 3 shows the Frame Error Rate (FER) and Average BOPs
per frame for POSD and GRAND with different error patterns
on RLC (127,85) and BCH (127,85). We can see that the
fastest reduction in FER with respect to Eb

N0
is seen using

POSD (EEP) and POSD (ILW). At a target FER 10−4 and
with the same test error pattern scheduling, we can observe
that POSD achieves a 0.5 dB gain in performance compared
to GRAND. With 10× the MQ used with POSD, GRAND
still sees a degradation of 0.2 dB at target FER 10−4.

Fig. 4 shows the FER and Average BOPs per frame for
POSD and GRAND with different error patterns with RLC
(128,64) and eBCH (128,64). At a target FER of 10−3, we
can see more than 1.2 dB gain using POSD (EEP, ILW, LW)
compared to GRAND (EEP, ILW, LW) with eBCH (128,64).
At high Eb

N0
s we can also see that the EEP error patterns

outperform the LW error patterns when used with POSD due to
them being a more accurate approximation of the ML pattern.
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Fig. 4. FER performance of Various Decoders on RLC (128,64) and eBCH (128,64). Unless otherwise specified, the maximum number of queries used with
the decoders is 104 and 4-bit quantization is used. Dashed lines correspond to eBCH(128,64) and solid lines correspond to RLC(128,64).

After using 1000× the MQ used with POSD, GRAND (LW)
can match the decoding performance of POSD (EEP), but with
1698× → 7× the average computational complexity.

Fig. 1 shows the performance of GRAND and POSD with
BCH (127,29) and RLC (128,32). POSD with LW and EEP
error patterns attain comparable performance but superior to
that of ILW error patterns since the ILW penalizes flipping
more bits. We can also clearly observe that decoding fails
with all GRAND methods at varying Eb

N0
whereby POSD still

achieves adequate decoding performance at those code rates.
At this low code rate, GRAND is unable to find a codeword
close enough to the received signal in the search space using
this maximum number of queries. Even by using 1000× the
maximum number of queries used by POSD (LW), GRAND
(LW) fails to achieve a FER less than 0.1 at Eb

N0
= 7. We

believe that with POSD, having a lower rate code reduces the
search space for TEPs while with GRAND, the search space
remains the same irrespective of rate.

V. CONCLUSION

In conclusion, we demonstrate the effectiveness of utiliz-
ing enhanced error patterns with POSD. To attain the same
performance of POSD, GRAND requires 1698× → 7× more
BOPs/Frame with codes of rate 0.5. GRAND also fails to
achieve an equivalent decoding performance with codes of
rate 0.25 even by using 1000× the maximum number of
queries of POSD. As such, the rate adaptability of POSD
makes it a more versatile code-agnostic decoder for short
codes compared to GRAND. However, the method’s reliance
on sorting poses a challenge in developing an efficient and
parallel hardware architecture. As such, future studies should
explore the possibility of using partial sorting to overcome this
challenge.
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