
Towards Achieving Ultra Reliable Low

Latency Communications Using

Guessing Random Additive Noise

Decoding

by

Marwan Jalaleddine

Department of Electrical & Computer Engineering
McGill University

Montréal, Québec, Canada

A thesis submitted to McGill University in partial fulfillment of

the requirements of the degree of Masters in Engineering

July, 15, 2021

© 2021 Marwan Jalaleddine All rights reserved

“A design cannot be disconnected from the values and assumptions in which it

was created, from the ideologies behind it.”

-Ruben Pater

Acknowledgements

First and foremost, I would like to thank Professor Warren J. Gross for intro-

ducing me to the field of communications. Professor Gross provided me with the

support and guidance that made this work possible. Additionally, I am thankful

to Thibaud Tonnellier and Syed Mohsin Abbas for their constructive feedback

throughout the years. Thibaud helped me delve deeper and gain a better under-

standing of the field of communications. Syed Mohsin Abbas helped me realize

the hardware constraints of implementing decoders in hardware and suggested

the idea behind AGRAND. Without Thibaud’s and Mohsin’s insights in commu-

nications and hardware development, this work would not have been successful.

I would also like to thank the Electrical Engineering Department and Foundation

Pierre Arbour for their financial assistance throughout the years of my Master’s

degree.

Finally, I am forever grateful for my family’s continuous support. Without

them, all of this would not have been possible.

v

Abstract

Ultra-reliable and low latency communications (URLLCs) is one of the key pillars

of the 5G communications standard which is used to enable applications ranging

from the smart grid to robot control. In the upcoming communication standards,

more stringent requirements are being established on the end-to-end latency and

reliability of data.

In an effort to build upon the current advancements in URLLC and guessing

random additive noise decoding (GRAND), we develop the partitioned GRAND

(PGRAND) which uses the quantized reliability information from the channel

to generate the most likely test error patterns. We assess the performance of

PGRAND on 5G NR CA-polar code, random linear code, and cyclic redundancy

check codes. PGRAND provides superior performance to that of ordered reliabil-

ity bit GRAND at high signal-to-noise ratios (SNRs) by achieving a 0.2dB gain

at a frame error rate (FER) of 10−4 and a 50% reduction in the average queries

per frame performance at Eb

N0
≥ 5.5dB. Additionally, PGRAND approaches the

FER performance of soft maximum likelihood GRAND at high SNRs with less

scheduling complexity. This makes PGRAND a desirable candidate as a near

maximum likelihood code agnostic decoder for any short, high rate code.

Alternatively, we also develop guessing random additive noise assisted decoding

(AGRAND) that can be used alongside any conventional decoder to improve the

decoder latency. If AGRAND succeeds to find a version of the codeword that

belongs to the codebook, the decoder terminates early, saving latency and power.

This decoding scheme can reduce latency by up to 84% at Eb

N0
= 5.5dB when used

with successive cancellation list decoding on CA-polar code. As such, AGRAND

enables maximum likelihood low latency decoding of CA-polar codes.

vi

Résumé

Les communicantions ultra-fiables et à très faible latence (URLLCs) constituent

l’un des piliers essentiels du standard de communication 5G, adopté pour activer

des applications allant du réseau électrique intelligent à la commande des robots.

Dans les prochaines normes de communication, des exigences plus strictes sont

établies en matière de latence et de fiabilité des données de bout en bout.

Dans le but de tirer parti des progrès actuels de l’URLLC et du décodage

à bruit additif aléatoire (GRAND), nous développons le GRAND partitionné

(PGRAND) qui utilise les informations de fiabilité quantifiées du canal pour

générer les modèles d’erreur de test les plus probables. Nous évaluons la per-

formance de PGRAND sur le code CA-polaire 5G NR, le code linéaire aléatoire

et les codes de contrôle de redondance cyclique. Le PGRAND offre une per-

formance supérieure à celle du GRAND à des rapports signal sur bruit (SNR)

élevés en réalisant un gain de 0.2dB à un taux d’erreur sur les trames (FER)

de 10−4 et une réduction de 50% de la performance des requêtes moyennes par

trame à Eb

N0
≥ 5.5dB. En outre, PGRAND s’approche de la performance FER du

GRAND à vraisemblance maximale douce à des SNR élevés avec une complexité

d’ordonnancement moindre. Cela fait de PGRAND un candidat souhaitable pour

décodeur agnostique de code à vraisemblance quasi maximale pour tout code

court à haut débit.

Alternativement, nous développons aussi le décodage assisté par bruit additif

aléatoire devinable (AGRAND) qui peut être utilisé à côté de n’importe quel

décodeur conventionnel pour améliorer la latence du décodeur. Si AGRAND

réussit à trouver une version du mot de code qui appartient au livre-code, le

décodeur se termine prématurément, ce qui permet d’économiser de la latence

vii

et de l’énergie. Ce schéma de décodage peut réduire la latence jusqu’à 84% à
Eb

N0
= 5.5dB lorsqu’il est utilisé avec le décodage d’annulation successive utilisant

une liste sur code CA-polaire. Ainsi, AGRAND permet un décodage à faible

latence et à vraisemblance maximale des codes CA-polaires.

CONTRIBUTIONS

All the simulations and algorithms for successive cancellation decoder and Berlekamp

Massey algorithm presented in this thesis were developed using the AFF3CT

toolkit [1]. The 5G MATLAB toolkit [2] was used to simulate the SCL de-

coder used in chapter 4. Additionally, the simulations for GRAND, SRGRAND,

SGRAND and ORBGRAND were done using Thibaud Tonnellier’s simulation

toolkit and verified with the author’s C++ scripts. The findings and analyses

in Chapters 3 and 4 feature simulations of two decoders, PGRAND and Ad-

GRAND, which represent the author’s original work. Additionally, the idea for

using GRAND as an adjunct decoder was first provided by Syed Mohsin Abbas;

however, all the analysis and the simulations in this report represent the author’s

original work.

ix

Contents

Contents x

List of Figures xii

List of Tables xiv

Abbreviations & Symbols xvi

1 Introduction 1

1.1 Objectives . 3

1.2 Summary of Contributions . 3

1.2.1 PGRAND . 3

1.2.2 AGRAND . 4

1.3 Thesis Organization . 4

2 Background 6

2.1 Digital Communication Systems 6

2.1.1 Linear error-correcting Code 7

2.1.2 BPSK Modulation . 9

2.1.3 Additive White Gaussian Noise 10

2.2 Error-correcting Codes . 12

2.2.1 Random Linear Code . 12

2.2.2 Polar Code . 13

2.2.3 Cyclic Redundancy Check Code 18

2.2.4 Bose–Chaudhuri–Hocquenghem Code 20

2.3 Code Agnostic Decoding . 21

x

2.3.1 Ordered Statistics Decoding 21

2.3.2 Guessing Random Additive Noise Decoding 23

2.3.3 Symbol Reliability Guessing Random Additive Noise De-

coding . 25

2.3.4 Soft Maximum Likelihood Decoding using GRAND 25

2.3.5 Ordered Reliability Bits Guessing Random Additive Noise

Decoding . 27

3 Partitioned Guessing Random Additive Noise Decoding 29

3.1 Partitioned GRAND algorithm 29

3.2 Partition Pattern Generation . 30

3.2.1 Pattern Generation for PGRAND 30

3.3 Partition Length and Partition Count 33

3.3.1 Partition Length and Partition Count 33

3.4 PGRAND with Abandonment . 35

3.5 Experimental Results & Analysis 37

3.5.1 Performance of PGRAND with 5G NR CA-PC 38

3.5.2 Performance of PGRAND with Different Codebooks 40

4 GRAND Assisted Decoding 42

4.1 Construction of the Decoder Scheme 42

4.1.1 AGRAND Algorithm . 43

4.1.2 Percentage of Codewords Decoded by AGRAND 44

4.1.3 Area and Power Considerations 46

4.2 Experimental Results & Analysis 47

4.2.1 Performance of AGRAND with BCH Decoding 47

4.2.2 Performance of AGRAND with SC Decoding 49

4.2.3 Performance of AGRAND with SCL Decoding 52

5 Conclusion 55

5.1 Thesis Summary . 55

5.2 Future Work . 56

5.2.1 PGRAND with New Channels 57

5.2.2 Hardware Implementation of PGRAND 57

5.2.3 Hardware Implementation of AGRAND 57

Bibliography 59

List of Figures

2.1 Transmission of a message through an additive noise channel . . . 7

2.2 The partitioning of a codeword into information and parity check

bits . 8

2.3 BPSK Modulation . 9

2.4 The probability density functions for BPSK symbols in an AWGN

channel . 11

2.5 Polar encoding architecture where the grey inputs u0, u1, u2 and u4

represent the frozen bits and the white inputs carry the information

bits. 13

2.6 Successive Cancellation Decoding of Polar Code 15

2.7 Successive Cancellation List Decoding Example 17

2.8 CRC Generation Scheme using Linear Feedback Shift Registers

(LFSR)s for gCRC11(x) where the boxes represent shift registers

and ⊕ represents the XOR operation. 19

2.9 Stages of BCH decoding . 21

3.1 Patterns generated by PGRAND for a codeword of length n =

12, ~ls = [3,3,3,3] and tw = 4. Columns indicate BTEPs, which are

ordered left to right in decreasing likelihood. Dots indicate flipped

bit locations. 31

3.2 FER performance of PGRAND on BCH [63,45,7] with different

sample partition divisions . 34

3.3 The FER Performance using GRANDAB, PGRANDAB and PGRAND

on Polar Code [128,105] . 36

xiii

3.4 The QPF performance of using GRANDAB with AB=3, PGRANDAB

with bit-flip limits [3,8] and PGRAND on CA-Polar Code [128,105,7]

37

3.5 Frame Error Rate vs Eb

N0
in an AWGN BPSK channel using SGRAND,

PGRAND and SCL on CA-Polar Code [128,105] 38

3.6 QPF vs Eb

N0
in an AWGN BPSK channel using SGRAND, PGRAND,

ASCL and SCL on Polar Code [128,105] 39

3.7 Frame Error Rate vs Eb

N0
in an AWGN BPSK channel using PGRAND

on CA-Polar [128,105], RLC [128,104] and CRC code [128,105] . . 41

4.1 The use of AGRAND in a digital communications system 43

4.2 The experimental fraction of messages that can be decoded by

AGRAND with varying Eb

N0
and nb 46

4.3 BCH FER Performance . 47

4.4 BCH Latency Performance . 48

4.5 FER Performance of Polar Code [105,128] and CA-Polar Code

[105+11,128] with GRAND assisted SC Decoding 50

4.6 SC Code Latency Performance . 51

4.7 SCL FER Performance on 5G NR Polar code with AGRAND . . 52

4.8 SCL Code LPF Performance . 54

List of Tables

2.1 A subset of the frozen bits used with 5G NR polar code [3] 14

2.2 CRC bit calculation example for message ”11011000” with poly-

nomial x3 + x+ 1 . 19

2.3 Ordered Statistics Decoding Permutation Example 22

2.4 An example of the execution of SGRAND 27

2.5 Order of the Logistic Weight TEPs generated for use in ORB-

GRAND. Rows indicate patterns, which are ordered top to bottom

in decreasing likelihood. 28

3.1 Partition TEPs generated by PGRAND with cs = 4 partitions

of equal lengths and tw = 4. Rows indicate patterns, which are

ordered top to bottom in decreasing likelihood. 32

3.2 Partition division overview for BCH [63,45,7] 33

4.1 The latency of the different stages of AGRAND presented in[4] . . 44

4.2 The probability of messages to be decoded by the AGRAND scheme

used with BM and SC decoding at an Eb

N0
= 5.5 44

xv

Abbreviations & Symbols

Abbreviations

AGRAND Guessing Random Additive Noise Assisted Decoding

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BM Belekamp-Massey

BPSK Binary Phase Shift Key

CA CRC Assisted

CRC Cyclic Redundancy Check

EA Euclidean Algorithm

FER Frame Error Rate

GBM GRAND Assisted BM Decoding

GRAND Guessing Random Additive Noise Assisted Decoding

GSC GRAND Assisted SC Decoding

GSCL GRAND Assisted SCL Decoding

HDD Hard Decision Decoding

LPF Latency per Frame

ML Maximum Likelihood

ORBGRAND Ordered Reliability Bit Guessing Random Additive Noise Decoding

PC Polar Code

PGRAND Partitioned Guessing Random Additive Noise Decoding

PGZ Peterson Gorenstein Zierler

QPF Queries per Frame

RLC Random Linear Code

SC Successive Cancellation

xvi

SCL Successive Cancellation List

SGRAND Soft Maximum Likelihood Decoding using Guessing Random Additive Noise

SNRs Signal to Noise Ratio

TEP Test Error Pattern

URLLC Ultra Reliable Low Latency Communication

Symbols

AB Abandonment Threshold

α Log Likelihood Ratio

β Partial Sum

BERin Bit-Flip Probability of the channel energy per transmitted information bit

C Codebook

cs Partition Count

dmin Minimum Hamming Distance

~e Bit Level Test Error Patterns

es Number of Errors in the Partition

esymb Energy of the Transmitted Symbol
Eb

N0
Energy per Bit to Noise Power Spectral Density Ratio

Es

N0
Energy per Symbol to Noise Power Spectral Density Ratio

f Frequency of Pattern

H Parity Check Matrix

k Length of Message

l List Size

lSC Latency of SC decoding

lSCL Latency of SCL decoding

lsmin Minimum partition length used

lsi Length of partition i

m Number of Bits per Symbol

MERR Mask Error Rate

N Normal Distribution

n Length of Codeword

~eG Gaussian Noise Signal

nb Number of Bit-Flips

p Parallelization Degree

r Rate Capability of the Code

slvl Depth of Binary Tree

~ssynd Syndrome

Serr Candidate Error Patterns

Si Partition Divisions

σ Standard Deviation

t Minimum Error Correcting Capability

θ Hard Moduation Function

~u Message
~̂u Estimated Message

~v Codeword

~x Modulated Message

v̂ Estimated Codeword

wc Weight of the Codeword

ws Partition Weight

~y Transmitted Channel Signal

~z Hard Modulated Recieved Signal

Chapter 1

Introduction

Ultra-reliable and low latency communications (URLLCs) is the main enabler for

many mission and safety-critical applications ranging from industrial automation

to smart transportation and remote healthcare [5]. Associated with URLLCs

are stringent constraints regarding reliability and latency. For instance, in 5G

systems, the end-to-end latency for industrial automation ranges from 1 to 100ms,

and the frame error rate (FER) should not exceed 10−4 [5]. As we head towards

6G communications, a strengthened version of URLLC is suggested to support

new scenarios like distributed AI and mobile robotics [6].

To that end, researchers have been trying to achieve ultra-reliable low latency

decoding by using near-capacity achieving codes for encoding. For instance, the

polar codes that are used in the 5G network achieve channel capacity with suc-

cessive cancellation decoding with infinite codeword size [7]. Additionally, near-

capacity achieving turbo codes [8] and LDPC codes [9] are widely used in current

communication standards [10] [3]. Even though the majority of the random linear

codes (RLC) have been proven to asymptotically achieve channel capacity [11],

RLC are seldom used for channel coding in the state-of-the-art communication

standards [3]. The lack of a predefined structure for the RLC code makes all the

efforts to design an efficient, low-latency maximum likelihood (ML) RLC decoder

difficult, as it would entail designing a code agnostic decoder.

Several decoders have been designed to work with error correcting codes that

lack a predefined structure. For example, the ordered statistics decoder (OSD)

1

is a prominent approach which uses the most reliable bits to estimate the most

likely codeword [12]. OSD can achieve ML decoding at the cost of an increased

computational complexity especially when it comes to reordering the generator

matrix in the gaussian elimination stage [12]. Several architectures have been

proposed to reduce the latency of OSD by using early stopping conditions or

by reducing the patterns considered [13]. Since the complexity of reordering the

generator matrix with OSD is estimated to be O(n3), with n being the codeword

length, the design for an efficient low latency OSD decoders has been proven

unwieldy.

Guessing Random Additive Noise Decoding (GRAND) has been recently de-

veloped as an ML decoder capable of achieving channel capacity with random

codebooks [14]. Rather than trying to deduce the codeword from the structure

of the channel code, GRAND leverages the reliability information obtained from

the channel output to guess the codeword specific additive noise [14]. To limit

the large number of queries performed by GRAND, an abandonment threshold

is incorporated in GRANDAB [14]. A highly parallelized hardware architecture

is proposed for GRANDAB in [4].

In the case where soft signal information can be used, Soft GRAND (SGRAND)

has been developed as a GRAND variant that uses the real valued channel inputs

to achieve ML decoding [15]. SGRAND has been shown to outperform all other

GRAND decoders in frame error rate (FER) and average number of queries per

frame (AQPF) [15]. It achieves ML decoding at the cost of an increased schedul-

ing complexity in the decoding process.

More recently, ordered reliability bits guessing random additive noise decoding

(ORBGRAND) has emerged as a universal decoder capable of matching the FER

performance of successive cancellation list decoding (SCL) [16] applied on polar

2

codes. ORBGRAND uses logistic weights as a metric to rank test error patterns

in increasing likelihood of occurrence. The use of the logistic weight ordering

decreases the scheduling complexity of ORBGRAND compared to SGRAND and

allows ORBGRAND to outperform GRANDAB in FER performance [17]. A high

throughput hardware implementation for ORBGRAND is described in [18].

1.1 Objectives

The main objective of this work is to tackle the shortcomings of ORBGRAND

and SGRAND. We aim to develop an algorithm that has better error-correcting

performance than ORBGRAND, while maintaining lower scheduling complexity

than SGRAND.

Additionally, we aim to explore the use GRAND alongside conventional de-

coders to reduce latency and power consumption.

1.2 Summary of Contributions

In this thesis, we develop two guessing random additive noise decoding methods:

the partitioned guessing random additive noise decoding (PGRAND) and the

guessing random additive noise assisted decoding (AGRAND).

1.2.1 PGRAND

PGRAND is a standalone code agnostic channel decoder that can achieve 0.2 dB

gain to ORBGRAND at a target FER of 10−5 using 50% less AQPF at Eb

N0
=

5.5 dB. Partitioned GRAND is also highly parallelizable and achieves a lower

scheduling complexity compared to SGRAND. The proposed PGRAND algo-

3

rithm divides the received codewords into several partition and generates test

error patterns for each partition. To determine the best flip error patterns, a

highly parametrized pattern generator is introduced alongside an abandonment

criterion.

1.2.2 AGRAND

Particularly useful for latency sensitive applications, GRAND can be used along-

side the conventional decoder to reduce average latency. This construction relies

on placing a GRAND stage with a low bit-flip limit before the conventional de-

coder stage. If AGRAND succeeds, the message is directly sent to the receiver.

If AGRAND fails, the codeword is then relayed to the conventional decoder to

be decoded. AGRAND thrives when used with high latency maximum-likelihood

decoders on capacity achieving codes with a large Hamming distance. For in-

stance, by using AGRAND alongside a successive cancellation decoder, we can

achieve a 84% reduction in average latency at Eb

N0
= 5.5dB.

1.3 Thesis Organization

The remainder of this thesis is structured as follows: Chapter 2 provides an

overview of the preliminaries of channel transmission and error correcting code.

The construction of a digital communications system is discussed in detail with

a focus on transmitting a linear error correcting code along an additive white

Gaussian noise (AWGN) channel. Several error correcting codes are discussed

alongside their conventional decoders. Additionally, a literature review of the

present code agnostic decoders is conducted.

This is then followed by Chapter 3 where we introduce the PGRAND algo-

4

rithm and discuss the effect of varying the partition length, partition count and

the abandonment threshold on the performance of PGRAND. A detailed com-

parison is included concerning the performance of PGRAND and other decoders

on the cyclic redundancy check aided (CA) polar code (PC) used in 5G New

Radio communication (5G NR CA-PC) [3]. Additionally, Chapter 3 discusses

the performance of PGRAND on three different codes with the same code rate

and codeword length.

Following the discussion of a standalone code agnostic decoder, we introduce

a GRAND scheme used to reduce the latency of conventional decoders. A cost

benefit analysis is conducted in Chapter 4 where the effect of minimum Hamming

distance, latency of conventional decoder and presence of cyclic redundancy check

(CRC) bits is analyzed with AGRAND. Finally, Chapter 5 concludes this thesis

with a summary of the presented research and an outline of directions for future

research extensions.

5

Chapter 2

Background

This chapter provides a comprehensive review of the preliminaries of channel

communications. Specifically, we introduce the central dogma behind any modern

digital communication system. We focus on the most common error-correcting

codes and provide a literature review on the state-of-the-art code agnostic channel

decoders used with error-correcting codes.

In the following sections, we use the following notations. Matrices are denoted

by a bold upper-case letter H while vectors are denoted by lower-case letters with

an arrow superscript ~v . The ith element of a vector is represented by a lowercase

subscript i. Scalars are represented by a lower-case letter. The transpose operator

is represented by >. The number of k-combinations from a given set of n elements

is noted by
(

n
k

)
. Fq represents a finite field with q elements and ⊕ represents the

modulo-2 addition operator.

2.1 Digital Communication Systems

Consider a discrete transmission channel susceptible to random additive white

Gaussian noise. A message ~u of size k is encoded to a codeword ~v of size n at

the sender end using the generator matrix G. This codeword is then modulated

to a physical signal ~x of size n which is transmitted through the noisy channel

to the receiver end. Assume that the Gaussian noise ~eG of size n is added to the

codeword as shown in (2.1) and the received codeword on the receiver end is ~y of

6

size n.

~y = ~x+ ~eG (2.1)

At the receiver end, ~y is then dispatched to a channel decoder. The channel

decoder tries to find the most likely guess of the transmitted message ~̂u. As

such, fast encoders and decoders are needed to guarantee the success of this

code transmission scheme. This section highlights the key aspects of channel

encoding, decoding and transmission which are used to realize a modern digital

communications system.

Figure 2.1: Transmission of a message through an additive noise channel

2.1.1 Linear error-correcting Code

Ever since Shannon’s theory of communications [19], our understanding of dig-

ital communications has drastically changed. Shannon proved that adding a

certain level of redundancy in the message allows us to communicate the message

practically noise-free to the receiver end [19]. We can add redundancy to ~u by

appending extra bits to the message before transmitting it along the channel.

These extra bits can be used by the channel decoder to detect and correct errors.

Channel encoding is a linear mapping from Fk −→ Fn in which n− k parity

check bits are appended to the message. The parity check bits are used to retrieve

the original message from a noisy version of the message. Figure 2.2 shows the

partitioning of a codeword into information bits and parity check bits. The choice

7

of the parity check bits determines the error detecting and correcting capability

of the code. Hence, we need to find a suitable way to define the parity check bits

which, in practice, boils down to finding a code with elements as far as possible

from each other.

Figure 2.2: The partitioning of a codeword into information and parity check bits

This leads us to define the minimum Hamming distance of the error-correcting

code (dmin) as the number of bits that differ between the the two closest elements

of the codebook (C). The minimum error detection capability of a linear block

code is specified in terms of the minimum distance and equals dmin− 1 [20]. Ad-

ditionally, the minimum error correction capability (t) equals dmin−1
2 [20]. Hence,

a larger minimum distance increases the error detecting and correcting capability

of the code.

This thesis focuses on linear block codes, which constitute a subset of error-

correcting codes. Linearity makes it easier to analyze the performance of various

error-correcting codes since it allows us to represent all operations in terms of ma-

trix multiplications and matrix additions. A linear block code is characterized by

its codeword length, message length, and minimum Hamming distance [n,k,dmin].

A code is also categorized based on its code rate defined in (2.2). The code rate

(r) represents the proportion of the codeword that carries useful information.

r = k

n
(2.2)

8

2.1.2 BPSK Modulation

This work focuses on binary transmission along a channel. In other words, we

assume that we only have two possible symbols, “ 1” and “0”.

Before transmitting a symbol through the channel, we need to map the binary

symbols into physical signals. We primarily use BPSK (Binary Phase Shift Key)

modulation in this thesis to map the binary symbols into a 0◦ or 180◦ phase

shift in the modulator sine wave. In Figure 2.3, the “1” and “0” symbols are

modulated into sine waves with the phase angles of 0◦ and 180◦ respectively.

Figure 2.3: BPSK Modulation

Let esymb denote the energy of a transmitted symbol. BPSK modulation

employs the mapping in (2.3) [20].

~xi = √

esymb if ~vi = 0

~xi = −√esymb if ~vi = 1
(2.3)

In most cases, the modulated values are normalized according to √esymb giving

us the mapping scheme in (2.4).

~xi = 1 if ~vi = 0

~xi = −1 if ~vi = 1
(2.4)

After transmitting a codeword along the channel, a hard decision demodulator

transforms the physical continuous signals to discrete digital signals. We de-

9

fine hard decision demodulation as a transformation θ that maps ~y to ~z. This

transformation is done by thresholding along zero as shown in (2.5).

~zi = 0 if ~yi > 0

~zi = 1 if ~yi < 0
(2.5)

Alternatively, a soft modulator quantizes the physical signals that are passing

through the channel into digital signals with a certain level of precision. The

real-valued channel values are stored and later used with the soft decoder.

2.1.3 Additive White Gaussian Noise

In an AWGN channel, the noise follows a normal distribution X ∼ N (0, σ2) with

mean 0 and variance σ2. The standard deviation (σ) is defined in (2.6) using the

code rate and energy per bit to noise power spectral density ratio (Eb

N0
).

σ =
√√√√ 0.5
r × Eb

N0

(2.6)

Additionally, the standard deviation of the noise signal can be defined in terms

of the energy per symbol to noise power spectral density ratio (Es

N0
). The relation

between Eb

N0
and Es

N0
is stated in (2.7) where m represents the number of bits per

symbol.

(
Eb

N0

)
db

= 10 log10 m+
(
Es

N0

)
db

− 10 log10 r (2.7)

To observe the distribution of physical signals along the channel, we overlap

the distribution of the noise over the modulated signals. We obtain the normal

distributions X1 ∼ N (−1, σ2) and X2 ∼ N (+1, σ2) . For example, the Gaus-

10

sian distributions centered around -1 and 1 with a standard deviation of 0.8 are

presented in Figure 2.4.

−5−4.5−4−3.5−3−2.5−2−1.5−1−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

5 · 10−2
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

X1
X2

Figure 2.4: The probability density functions for BPSK symbols in an AWGN
channel

The size of the tail of the normal distribution determines the bit error prob-

ability with hard decision demodulation in an AWGN BPSK channel. For in-

stance, in Figure 2.4, the red shaded area determines the probability of having a

transmitted “0” recognized as “1”. Similarly, the shaded blue area represents the

probability of having a transmitted ‘1’ recognized as a ‘0’. A larger Eb

N0
reduces

the standard deviation of the normal distribution which, in turn, reduces the

wrongfully demodulated values at the receiver end.

The probability of erroneous hard demodulation is referred to as the stationary

bit flip probability of the channel energy per transmitted information bit (BERin)

and is calculated in (2.8).

BERin = Qfunc

(√
2× r × Eb

N0

)
(2.8)

11

2.2 Error-correcting Codes

In this section, we discuss three commonly used error-correcting codes in great

detail. These codes have significant historical, practical and theoretical uses.

2.2.1 Random Linear Code

The performance of random codes is one of the earliest topics explored in in-

formation theory in the classic works of Shannon [19], Elias [11], Fano [21] and

Gallager [22]. Random linear codes (RLC) were one of the earliest codes to be

proven to achieve channel capacity [11]. Ever since then, significant efforts have

been conducted to create capacity-achieving random-like codes that can reach

the Gilbert-Varshamov asymptotic bound on the minimum distance [23]. Even-

though most RLC codes have been proven to asymptotically obtain the highest

achievable code rate with a given minimum distance and large codeword size

[11], RLC codes are seldom used for channel coding in the state-of-the-art com-

munication standards [24][10][3]. The lack of a predefined structure for the RLC

code renders all efforts to design an efficient, capacity-achieving low-latency RLC

decoder difficult, as it would entail designing a code agnostic decoder.

To construct random linear binary codes, k binary values ∈ {0, 1} are ran-

domly placed in the n columns of the generator matrix. We follow this by verifying

that the rank of the matrix is equal to k. This check is essential to make sure all

the information bits are represented in the encoded code word.

12

2.2.2 Polar Code

Ever since Shannon proved the existence of capacity achieving codes [19], signif-

icant efforts have been made to construct capacity achieving structured codes.

Arikan was the first to discover that by using the concept of channel polarization,

we can construct a code which achieves symmetric channel capacity when used

with successive cancellation decoding [7].

By designing polar codes, Arikan designed an error-correcting code that di-

vides channels into reliable and unreliable channels [7]. Hence, by using the

reliable bits to encode message bits and by using unreliable bits to encode redun-

dant bits, symbols can be sent error free across a noisy channel. The redundant

bits are usually frozen to a well defined value known by both the encoder and

decoder. The reliability of the channels can then be determined by evaluating

the Bhattacharyya parameters using quantization methods [25]. A detailed ex-

planation on the construction of polar codes is presented in [25] and a theoretical

proof of channel polarization is presented in [7].

Figure 2.5: Polar encoding architecture where the grey inputs u0, u1, u2 and u4
represent the frozen bits and the white inputs carry the information bits.

13

Figure 2.5 shows the polar encoding scheme used to encode polar code [8,4].

Bits u0, u1, u2 and u3 are frozen since they are less reliable and contain redundant

information from other bits. x0 contains information from all the message bits

x0 = u0⊕u1⊕u2⊕u3⊕u4⊕u5⊕u6⊕u7, but u0 can only be estimated through x0.

Hence, accurate knowledge of u0 is harder to achieve knowing x0. Bit u7 is the

most reliable bit as it can be estimated using all the channel bits. Additionally, x7

solely contains the information from the u7 bit. Hence, we can directly estimate

u7 by using the information presented in x7.

Table 2.1: A subset of the frozen bits used with 5G NR polar code [3]

W Q W Q W Q W Q W Q W Q W Q
0 0 20 256 40 35 60 516 80 23 100 140 120 53
1 1 21 34 41 258 61 49 81 134 101 30 121 193
2 2 22 24 42 26 62 74 82 384 102 146 122 152
3 4 23 36 43 513 63 272 83 76 103 71 123 77
4 8 24 7 44 80 64 160 84 137 104 262 124 164
5 16 25 129 45 37 65 520 85 82 105 265 125 768
6 32 26 66 46 25 66 288 86 56 106 161 126 268
7 3 27 512 47 22 67 528 87 27 107 576 127 274
8 5 28 11 48 136 68 192 88 97 108 45 128 518
9 64 29 40 49 260 69 544 89 39 109 100 129 54
10 9 30 68 50 264 70 70 90 259 110 640 130 83
11 6 31 130 51 38 71 44 91 84 111 51 131 57
12 17 32 19 52 514 72 131 92 138 112 148 132 521
13 10 33 13 53 96 73 81 93 145 113 46 133 112
14 18 34 48 54 67 74 50 94 261 114 75 134 135
15 128 35 14 55 41 75 73 95 29 115 266 135 78
16 12 36 72 56 144 76 15 96 43 116 273 136 289
17 33 37 257 57 28 77 320 97 98 117 517 137 194
18 65 38 21 58 69 78 133 98 515 118 104 138 85
19 20 39 132 59 42 79 52 99 88 119 162 139 276

The polar codes considered in this thesis are of dimensions [128,105] and

[128,116]. The frozen bits are chosen based on a subset of the ordering present in

[3] for Polar Code of length 1023. For example, for polar code (PC) [128,116], the

14

Figure 2.6: Successive Cancellation Decoding of Polar Code

following bits are frozen: 0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6. We present in Table 2.1

a subset of the bit ordering used with 5G NR PC. W sorts the bits in ascending

order of reliability, and Q represents the bit index before polar encoding.

Recovering the message from the channel output is one of the most computa-

tionally intensive tasks. The methods commonly used in practice are successive

cancellation (SC) decoding [7] and successive cancellation list (SCL) decoding

[16]. In this thesis, PC [128,105] is typically used with SC decoding and PC

[128,116] is used with SCL decoding. With SCL decoding, 11 CRC bits are first

appended to the message which results in CA-PC [128,105+11]. This CRC aided

encoding generates a code of effective k = 105 bits and n− k = 23 bits.

Successive Cancellation Decoder

The wide interest in using polar codes for channel encoding originates from the

fact that long polar codes are capacity achieving with SC decoding [7]. SC

decoding can be represented by a binary tree where the search in the left branch

is prioritized. An example of this binary tree is presented in Figure 2.6 whereby

S = log2(n) defines the depth of the tree.

SC decoding uses the log likelihood ratio (~αi) of the received bits as defined

15

in (2.9) to decode the noisy codeword.

~αi = ln(P (~yi|~xi = 0)
P (~yi|~xi = 1)) (2.9)

Each node receives from its parent a vector of log likelihood ratios whereby the

log likelihood ratio associated with the left leaf node (~αl
i) and the right leaf node

(~αl
i) can be calculated using (2.10) [26].

~αl
i = sgn(~αi)sgn(~αi+2slvl−1)min(|~αi|, |~αi+2slvl−1|)

~αr
i = ~αi+2slvl−1 + (1− 2~βl

i)~αi

(2.10)

Based on these realizations and the partial sums of the left (~βl
i) and right (~βr

i)

nodes, the partial sum of the parent node (~βi) is updated using (2.11) [26].

~βi = ~βl

i ⊕ ~βr
i if i < 2slvl−1

~βi = ~βr
i otherwise

(2.11)

At the leaf node level, a hard decision is made at each of the leaf nodes to

determine whether the bit is 1 or 0 based on 2.12 [26].

~βi = 0 if ~αi > 0
~βi = 1 otherwise

(2.12)

An optimized hardware implementation for SC decoding has been developed

in [27] with a latency lsc specified in (2.13) where p represents the parallelization

factor.

lsc = 2n+ n

p
log2(n4p) (2.13)

16

Figure 2.7: Successive Cancellation List Decoding Example

Successive Cancellation List Decoder

To improve the mediocre FER performance of SC decoding on short block codes,

successive cancellation list decoding was used as a novel way to decode polar

code [28]. One way to look at SCL decoding can be by representing the SCL

decoder in a similar fashion to SC decoding, as a binary tree. The binary tree is

traversed from the base node to the leaf nodes taking into account the possibility

of having a ‘1’ or a ‘0’ in that position [28]. SCL uses a metric to choose the L

most probable paths to be explored at a given time. This is done at each level

until the entire codeword is decoded [28]. It was shown that by using SCL with

a large list size, ML decoding becomes possible [16].

Figure 2.7 shows the progression of an SCL decoder. The red paths are

discarded as they are less likely to occur. Only the black and blue paths are

pursued. The blue path representing codeword ”1001” is chosen by the SCL

decoder as the most probable codeword out of all the considered paths.

Once the tree is completely traversed, the decoder chooses the most likely

codeword. To simplify this procedure, CRC bits are appended to the message bits.

If the check sequence computation is valid, the route with this check sequence

is selected. By using CRC bits, we are significantly improving the decoding

17

performance of the SCL decoder which allows us to reach ML decoding with

large list sizes [16].

Several highly parallelizable hardware architectures were created to implement

SCL decoding [29] [30] [31]. The latency lscl of the architecture designed by

Balatsoukas and Stimming [29] is shown in (2.14).

lscl = (2 + r)n+ n

p
log n

4p (2.14)

2.2.3 Cyclic Redundancy Check Code

Cyclic redundancy check (CRC) codes are very popular cyclic error-correcting

codes which have been historically used for error detection. CRC codes are typi-

cally used alongside an additional error-correcting code seeing as CRC codes lack

a conventional predefined error-correcting decoder.

CRC codes are defined by a generator polynomial which usually determines

the error detection capability of the code. The goal of a good designer is to choose

a suitable CRC polynomial that maximizes the error detection capability of the

code of a given codeword length. The optimal polynomials for certain codeword

lengths can be found in [32].

We used two CRC polynomials of different lengths in this report. We append

a CRC polynomial of length 11 to the message bits in polar code [128,116] [3].

Hence, the effective number of information bits is reduced to 105 bits. Addition-

ally, we used the CRC polynomial of length 24 to generate CRC code [128,104]

[3]. The generator polynomials considered in this work are presented in (2.15).

18

Table 2.2: CRC bit calculation example for message ”11011000” with polynomial
x3 + x+ 1

1 1 0 1 1 0 0 0 0 0 0
1 0 1 1
0 1 1 0 1 0 0 0 0 0 0

1 0 1 1
0 0 1 1 0 0 0 0 0 0 0

1 0 1 1
0 0 0 1 1 1 0 0 0 0 0

1 0 1 1
0 0 0 0 1 0 1 0 0 0 0

1 0 1 1
0 0 0 0 0 0 0 1 0 0 0

1 0 1 1
0 0 0 0 0 0 0 0 0 1 1

Figure 2.8: CRC Generation Scheme using Linear Feedback Shift Registers
(LFSR)s for gCRC11(x) where the boxes represent shift registers and ⊕ represents
the XOR operation.

Encoding & Decoding CRC Code

To encode a message, it is first appended by zeros and then divided by the poly-

nomial vector. In Table 2.2, we present the division of the message “11011000”

by the CRC polynomial x3 + x+ 1 to produce the check sequence “011”.

Using the linear feedback shift register architecture described in Figure 2.8,

we are able to encode and decode CRC bits with the following polynomial: x11 +

x10 + x9 + x5 + 1. The message bits are inputted at the data port of the circuit

19

and a structure consisting of shift registers and XOR gates is used to encode

the message. The remaining values in the shift registers, after passing the entire

message vector, represent the check sequence.

gCRC11(x) = x11 + x10 + x9 + x5 + 1

gCRC24(x) = x24 + x23 + x21 + x20 + x17 + x15 + x13 + x12 + x8 + x4 + x2 + x+ 1
(2.15)

In SCL decoding, CRC bits are used to prune the list of the most probable

binary tree paths and reduce them to only one path.

2.2.4 Bose–Chaudhuri–Hocquenghem Code

Bose–Chaudhuri–Hocquenghem codes are algebraic error-correcting cyclic codes

developed independently by Bose, Chaudhuri [33] and Hocquenghem [34]. BCH

codes are arguably one of the most powerful error-correcting codes with applica-

tions ranging from ultra reliable memories [35][36][37][38] to maritime [39] and

terrestrial [20] communication systems.

BCH codes are encoded in a similar fashion to CRC codes by using linear

feedback shift registers [40]. The process of decoding binary BCH codes starts

by computing the syndrome polynomial of the codeword. This is followed by

computing the error-locator polynomial through evaluating the key equation us-

ing the euclidean algorithm (EA) [41], Peterson–Gorenstein–Zierler (PGZ) [42]

or the Berlekamp–Massey algorithm (BM) [43] [40]. After computing the key

equation, Chien search [44] is used to find the roots of error locator polynomials.

This process is illustrated in Figure 2.9.

Conventional serial BCH decoders use a total of 2n + t + 1 clock cycles to

decode each codeword. Syndrome calculation and Chien search use n clock cycles

20

Figure 2.9: Stages of BCH decoding

each. Additionally, solving the key equation using BM takes t + 1 clock cycles

[45]. Parallel architectures are commonly used to reduce the latency of BCH

decoding by implementing a parallel syndrome check [46], implementing a parallel

architecture for Chien search [47], and deriving new methods to solve the key

equation [46] [48]. These parallel architectures are suitable for short block codes

and are rarely used with large error-correcting codes due to their large area

footprint.

2.3 Code Agnostic Decoding

2.3.1 Ordered Statistics Decoding

Several decoders have been designed to work with error-correcting code that lacks

a predefined structure. The ordered statistics decoder (OSD) is a prominent

approach that uses the most reliable bits to estimate the most likely codeword

[12]. OSD can achieve ML decoding at the cost of an increased computational

complexity especially when it comes to reordering the generator matrix in the

Gaussian elimination stage [13]. Several architectures have been proposed to

reduce the latency of OSD by employing early stopping conditions [49] [50] or

by reducing the considered patterns [51]. Since the complexity of reordering the

generator matrix with OSD is estimated to be O(n3), the design for an efficient

low latency OSD decoder has been proven to be unwieldy.

21

Table 2.3: Ordered Statistics Decoding Permutation Example

i 1 2 3 4 5 6 7
~αi 0.96 -0.70 -1.4 1.0 1.1 1.2 0.29
~p1 3 6 5 4 1 2 7
Sorted ~αi -1.4 1.2 1.1 1.0 0.96 -0.70 0.29

Algorithm

The first step after obtaining the codeword from the channel is reordering the

codeword based on decreasing reliability. This permutation is referred to as ~p1

and it sorts the received log likelihood ratios αi in descending order. This can be

seen in Table 2.3 where the transmitted codeword is sorted based on decreasing

reliability and the permutation ~p1 is generated.

Then, we permute the columns of the generator matrix G using ~p1 to obtain

G′. However, since OSD relies on the k most reliable linearly independent bits

and tries to reproduce the remaining bits based on them, we need to make sure the

first k columns of G′ are linearly independent. We used the Gaussian elimination

function to create a systematic generator matrix G′′. This process produces a

new permutation ~p2.

G” = ~p2(~p1(G))

Finally, a hard decision decoder is used to map ~y into ~z. We select the k most

reliable bits for the order-l OSD algorithm. The pseudo-code for an order-l OSD

is presented in Algorithm 1.

We initialize the algorithm by adding the most likely noise sequence to the

most reliable k bits. Through this process, we generate our candidate vector (~zc).

~zc is then multiplied by the modified G” matrix to generate the codeword ~j. The

Hamming distance between ~j and ~zc is then calculated and the codeword with

the least hamming distance from ~zc is outputted as the result. The number of

22

Algorithm 1: OSD-l Algorithm
Input : ~z, G”, lmax

Output: ~zm or ABANDON
1 nb ← 0 ; // Current number of bit-flips
2 dm ←∞ ; // Minimum value of the Hamming distance
3 ~zm ← ∅ ; // Current maximum likelihood codeword
4 ~zc ← ∅ ; // Candidate permuted message
5 while nb ≤ lmax do
6 ~e← most likely noise pattern ;
7 ~zc = (~p2(~p1(~z)) ⊕ ~e)[1 : k] ;
8 ~j = ~zc ×G” ;
9 dc = findHammingdistance(~z,~j) ;

10 if dc = 0 then
11 return ~p−1

1 (~p−1
2 (~zc)) ;

12 else if dc < dm then
13 ~zm ← ~p−1

1 (~p−1
2 (~zc)) ;

14 end
15 return ~zm ;

bit-flips (nb) is varied to reach a user-defined maximum (lmax). It is important

to note that a Hamming distance of 0 suggests that the generated codeword is

an exact match with the complete codeword received over the channel.

2.3.2 Guessing Random Additive Noise Decoding

Guessing Random Additive Noise Decoding (GRAND) has been recently devel-

oped as an ML decoder capable of achieving channel capacity with random code-

books [14]. GRAND tries to guess the additive noise ~e impacting the codeword by

leveraging the bit reliability information from the channel. To obtain the most

likely codeword guess (~̂v), the possible noise patterns are sorted in decreasing

likelihoods of occurrence and are then subtracted from the received codewords.

GRAND uses ~αi to sort the bit locations in terms of reliability. The number of

bit-flips is also varied starting from 0 bit-flips to a user-defined maximum.

23

To determine if ~̂v belongs in the codebook (C), GRAND uses the transpose

of the parity check matrix (H) to compute the syndrome (~ssynd) of the codeword

as shown in (2.16).

~ssynd = ~̂v ×HT (2.16)

H is the orthogonal complement of G and therefore any codeword belonging

to G is orthogonal to H. If ~̂v belongs to C, then ~̂v is orthogonal to H and

~ssynd = ~0.

Algorithm 2: GRANDAB Algorithm
Input : ~y, H, lmax
Output: ~̂v or ABANDON

1 while nb ≤ lmax do
2 ~e← most likely noise pattern ;
3 nb++ ;
4 ~̂v = ~y ⊕ ~e ;
5 if ~̂v ∈ C then
6 return ~̂v;
7 end
8 end

In addition, it might be advantageous to limit the large number of queries per-

formed by GRAND. To that end, an abandonment threshold is incorporated with

GRANDAB [14]. The pseudo-code for the GRANDAB algorithm is presented in

Algorithm 2.

Section 2.3.3, section 2.3.4, section 2.3.5 and chapter 3 describe alternative

ways to generate the noise patterns.

24

2.3.3 Symbol Reliability Guessing Random Additive Noise

Decoding

In the case where signal reliability information can be used, SRGRAND was

developed to improve the performance of GRAND. SRGRAND uses the soft

channel information to divide the received bits into reliable and non-reliable bit

partitions [52]. To that end, SRGRAND introduces a new threshold τ in (2.17)

which is a function of the standard deviation of the code-length, the channel noise

and the mask error rate (MERR)[53]. F−1
N represents the inverse of the normal

distribution function. We define MERR as the probability that a bit is marked as

reliable when it is in fact unreliable [53]. Since the MERR defines the resolution

of this threshold, a lower MERR improves the FER performance of the code,

especially at high SNRs.

τ = σF−1
N ((1−MERR) 1

n)− 1 (2.17)

The received signals with absolute values between 0 and τ are labeled as

unreliable bits. All the values with absolute values greater than τ are labeled as

reliable bits. GRAND then flips only the bits labeled as unreliable which reduces

the number of TEPs and improves the FER performance.

2.3.4 Soft Maximum Likelihood Decoding using GRAND

SGRAND is another soft decoding GRAND algorithm that uses the real-valued

channel values to achieve ML decoding [15]. SGRAND uses the channel output

realizations p(~yj|θ(~yj)) to select the next maximum likelihood error pattern. This

can be seen in (2.19) where the error vector (~e) is assigned the most likely error

25

sequence from the candidate error patterns (Serr). This step maximizes the

probability of correct hard modulation.

p(~y|θ(~y)− ~v) =
n∏

j=1
p(~yj|θ(~yj))1−~e~ij × (1− p(~yj|θ(~yj)))~e~ij (2.18)

Algorithm 3: SGRAND Algorithm [15]
Input : ~y, p(~yi|θ(~yi))1−~e~ij , lmax

Output: ~̂v
1 nb ← 0 ;
2 ~i← GetSortedIndices(~y) ; // Ordered Error Indices
3 while nb ≤ lmax do
4 ~e← arg max~v∈Seff

p(~y|θ(~y)− ~v) ;
5 Serr=Serr\ ~e~ij;
6 nb++ ;
7 ~̂v = θ(~y) 	 ~e ;
8 if ~̂v ∈ C then
9 return ~̂v;

10 else
11 if ~e = ~0 then
12 j ← 0;
13 else
14 j ← max{j : ~e~ij 6= 0};
15 end
16 if j < n then
17 ~e~ij+1 ← 1;
18 Serr = Serr

⋃{~e};
19 if j > 0 then
20 ~e~ij ← 0;
21 Serr = Serr

⋃{~e};
22 end
23 end

~e← arg max
~v∈Serr

p(~y|θ(~y)− ~v) (2.19)

To calculate p(~y|θ(~y)− ~e) of each of the candidate vectors, the p(~yj|θ(~yj)) of

26

Table 2.4: An example of the execution of SGRAND

nb ~e~i p(~y|θ(~y)− ~e) j Serr
1 (0,0,0) 0.06 0 {(1,0,0)}
2 (1,0,0) 0.14 1 {(1,1,0),(0,1,0)}
3 (1,1,0) 0.21 2 {(0,1,0),(1,0,1),(1,1,1)}
4 (1,1,1) 0.21 3 {(0,1,0),(1,0,1)}
5 (1,0,1) 0.14 4 {(0,1,0)}
6 (0,1,0) 0.09 5 {(0,1,1),(0,0,1)}
7 (0,1,1) 0.09 6 {(0,0,1)}
8 (0,0,1) 0.06 7 {}

the individual bit locations are used as shown in (2.18). During each iteration,

SGRAND chooses the error vector with the largest p(~y|θ(~y)−~e) to be used with

GRAND decoding. Additionally, during the same iteration, SGRAND adds two

error vectors to Serr which results in a net addition of one vector per iteration.

The complete pseudo-code for SGRAND is listed in Algorithm 3 [15].

An example of the the error candidates generated by SGRAND for n=3,

p(y1|θ(~y1)) = 0.3, p(~y2|θ(~y2)) = 0.4 and p(~y3|θ(~y3)) = 0.5 is presented in Table

2.4.

SGRAND has been shown to outperform all other GRAND decoders in terms

of frame error rate (FER) and average number of queries per frame (QPF) [15].

It achieves ML decoding at the cost of an increased scheduling complexity in the

decoding process.

2.3.5 Ordered Reliability Bits Guessing Random Additive

Noise Decoding

More recently, the Ordered Reliability Bits GRAND (ORBGRAND) has emerged

as an algorithm capable of matching the FER performance of SCL decoding

applied on polar codes [17]. ORBGRAND uses logistic weights (wL) as a metric

27

Table 2.5: Order of the Logistic Weight TEPs generated for use in ORBGRAND.
Rows indicate patterns, which are ordered top to bottom in decreasing likelihood.

wL ~e~i1 ~e~i2 ~e~i3 ~e~i4
0 0 0 0 0
1 1 0 0 0
2 0 1 0 0

3 1 1 0 0
0 0 1 0

4 1 0 1 0
0 0 0 1

to rank test error patterns (TEPs) in increasing likelihood of occurrence as shown

in (2.20) [17]. ~e represents the permuted error vector, sorted in increasing bit

reliability, ~i represents the vector of ordered error indices. The logistic weight of

the error vector is calculated as the sum of of ordered error indices with a nonzero

value.

wL(~z) = Σn
j=1

~ij × 1(~e~ij
=1) (2.20)

The error sequences are generated in increasing logistic weights. For exam-

ple, Table 2.5 shows the generation of the error sequences for the first 4 logistic

weights. Unlike the generation of Hamming weights, which only takes into ac-

count the number of bit-flips, the generation of logistic weights also takes into

consideration the reliability of the bits being flipped.

The use of the logistic weight ordering decreases the scheduling complexity

of ORBGRAND compared to SGRAND and allows ORBGRAND to outperform

GRANDAB in FER performance [17].

28

Chapter 3

Partitioned Guessing Random Ad-

ditive Noise Decoding

Based on the aforementioned GRAND methods, we have devised a new approach

to generate the noise patterns. PGRAND effectively divides the channel output

into several reliability partitions to generate partition noise patterns. In this

chapter, we discuss the algorithm behind PGRAND, and we evaluate the FER

and QPF performance of PGRAND on various types of code.

3.1 Partitioned GRAND algorithm

The algorithm for PGRAND is detailed in Algorithm 4. The algorithm starts

by sorting the received bits of ~y based on increasing absolute value of the log

likelihood ratio (LLR) vector. Additionally, a hard demodulated value of the

received signal (θ(~y)) is generated. This is then followed by dividing the sorted

codeword into several partitions and assigning weights (~ws) to each partition using

(3.1). The effects of varying the individual partition lengths (~lsi
) and partition

count (cs) are thoroughly discussed in Section 3.3.1. Test error patterns (TEPs)

are then generated at partition level (PTEPs) and at bit level (BTEPs). PTEPs

are uniquely generated based on (3.2) in increasing codeword weight (wc), and

the corresponding BTEPs are derived by using the lexicographic order. BTEPs

are then tested for codebook membership. A maximum codeword weight (tw) can

29

Algorithm 4: PGRAND Algorithm
Input : HT, ~y, n, ~ls, tw
Output: ~̂v or ABANDON

1 ~ind← SortLLR(~y) ;
2 θ(~y)← HardDemodulate(~y) ;
3 for wc = 0 : tw do
4 PTEPs ← GeneratePT EP s(~ls, wc, ~ind) ;
5 BTEPs ← GenerateBT EP s(PTEPs, ~ind) ;
6 for all ~e in BTEPs do
7 ~̂v = ~θ(y) ⊕ ~e ;
8 if ~̂v ·HT = ~0 then
9 return ~̂v;

10 end
11 end
12 end

be set by the user to limit the maximum number of queries done by PGRAND.

3.2 Partition Pattern Generation

3.2.1 Pattern Generation for PGRAND

Our proposed algorithm generates patterns based on increasing codeword weights.

At first, the codewords are divided into cs partitions each of length ~lsi. Each

partition is assigned a partition weight based on (3.1) where ls,min is the minimum

partition length used. The partition weights are generated starting from ~ws1 = 1.

Equation 3.1 also takes into account the case where the partitions have different

partition lengths (~lsi).

~ws i+1 = ~wsi +

 ~lsi

ls,min

 (3.1)

After generating all the partition weights, we start generating our PTEPs.

30

Figure 3.1: Patterns generated by PGRAND for a codeword of length n = 12, ~ls
= [3,3,3,3] and tw = 4. Columns indicate BTEPs, which are ordered left to right
in decreasing likelihood. Dots indicate flipped bit locations.

The codeword weight and the number of errors in the partition (~esi) are used to

sort the partition test error patterns in decreasing likelihood of occurrence. This

criterion is presented in (3.2).

wc =
i=cs∑
i=1

~wsi × ~esi (3.2)

For example, using this pattern generation algorithm, a codeword of size n =

12 bits divided into 4 equal partitions with tw = 4 produces the PTEPs shown in

Table 3.1. The BTEPs that are generated based on the PTEPs are presented in

Fig. 3.1. For clarity, using ~es = [2, 0, 0, 0], the generated BTEPs are numbered

from 7 to 9 in Fig. 3.1.

The test error pattern generation technique used by PGRAND is based on

an analysis of the most likely partition errors generated in an AWGN channel.

During numerical simulation on an AWGN channel, we collect most frequent

error patterns for each partition and compute their cost using (3.3) and store

them in ascending order of their cost. Pattern cost is directly proportional to

the complexity of the bit-flips defined as
i=cs∏
i=1

(
~lsi

~esi

)
. Pattern cost is also inversely

31

Table 3.1: Partition TEPs generated by PGRAND with cs = 4 partitions of equal
lengths and tw = 4. Rows indicate patterns, which are ordered top to bottom in
decreasing likelihood.

wc ~es1 ~es2 ~es3 ~es4
0 0 0 0 0
1 1 0 0 0

2 0 1 0 0
2 0 0 0

3
3 0 0 0
1 1 0 0
0 0 1 0

4
1 0 1 0
2 1 0 0
0 0 0 1

proportional to the frequency (f) of this error pattern to occur in this channel.

Hence, pattern cost penalizes the pattern generation algorithm for using more

bit-flips and flipping more reliable partitions first.

Pattern Cost =

i=cs∏
i=1

(
~lsi

~esi

)
f

(3.3)

Increasing the number of errors in a partition contributes to the decay of the

frame error rate performance of the decoder. This is mainly due to the fact that

flipping too many bits results in generations of false positive codewords which

degrade the FER performance. Additionally, flipping more reliable partitions

first would produce test error patterns with a low likelihood of occurrence.

32

Table 3.2: Partition division overview for BCH [63,45,7]

~ls1 ~ls2 ~ls3 ~ls4 ~ls5 ~ls6 ~ls7 ~ls8 ~ls9
S1 32 31
S2 21 21 21
S3 16 16 16 15
S4 8 8 16 16 15
S5 4 4 8 16 16 15
S6 4 4 4 4 4 4 8 16 15
S7 5 5 5 5 5 5 10 10 13

3.3 Partition Length and Partition Count

3.3.1 Partition Length and Partition Count

We evaluate the performance of PGRAND with varying partition lengths and

number of sections. We start by using PGRAND on BCH code [63, 45, 7] with

[n, k, dmin] where dmin is the minimum Hamming distance of the code. For cs < 4

partitions, the codeword is split into cs partitions of equal size. For cs larger

than 4 partitions, the codeword is first divided into 4 large partitions and then

the 4 sections are further divided starting from the least reliable partition and

taking into account ls,min. The sample partition divisions (Si) considered in this

section are listed in Table 3.2. Additionally, the FER performance of the sample

divisions is presented in Fig. 3.2.

For example, in S4, the codeword is first divided into equal 4 partitions of

(16,16,16,15) bits each and then the least reliable 16 bits section is further divided

into 2 sections of 8 bits each.

We can see from Fig. 3.2 that having large partitions as in S1, S2, S3 and S4

leads to a worse FER performance than the sample partition divisions with

shorter partitions in S5, S6 and S7. Therefore, it is imperative to reduce the

33

2.5 3 3.5 4 4.5 5

10−5

10−4

10−3

10−2

10−1

100

Eb
N0

(dB)

FE
R

S1
S2
S3
S4
S5
S6
S7

Figure 3.2: FER performance of PGRAND on BCH [63,45,7] with different sam-
ple partition divisions

length of less reliable partition to improve the FER performance of PGRAND.

Smaller partitions boost the performance of PGRAND since PGRAND is more

capable of distinguishing different partitions based on their reliability. Addi-

tionally, having many small partitions in S6 and S7 increases the complexity

of producing partition weights without any additional FER performance boost

compared to the FER performance of having a lower partition count in S5.

34

3.4 PGRAND with Abandonment

In this section, we analyze the effect of limiting the number of bit-flips by using

PGRAND with abandonment (PGRANDAB). Using PGRANDAB, a limit (AB)

is imposed on the Hamming weight of generated test error patterns. To explore

the effect of limiting the Hamming weight of the TEPs, we simulate PGRANDAB,

GRANDAB and PGRAND on CA-Polar code [128,105]. The FER and AQPF

results of our simulation are presented in Fig. 3.3. The bit-flip limits used with

PGRANDAB are [3 → 8] and the bit-flip limit used with GRANDAB is 3 since

it is shown in [53] that for AB > 3 there is no improvement in FER performance

with GRANDAB for 5G NR CA-polar code [128,105].

We can see that increasing the bit-flip limit beyond 8 bit-flips does not improve

the FER performance beyond that of PGRAND. Additionally, it can be seen that

the AQPF increases with the increase of AB from AB=3 to AB=5 and then starts

to decrease following that to reach the minimum AQPF at AB=8. Hence, we

recommend the use of a high AB to reduce the AQPF performance and improve

the FER performance of PGRANDAB.

In this section, we analyze the effect of limiting the number of bit-flips in

PGRAND. PGRAND with abandonment (PGRANDAB) only considers partition

TEPs with a number of bit-flips less or equal to the designated limit (AB). To

that end, we simulate PGRANDAB, GRANDAB and PGRAND on CA-Polar

code [128,105]. The FER and QPF results of our simulation are presented in

Figure 3.3 and Figure 3.4 respectively. The bit-flip limits used with PGRANDAB

are [3,8] and the bit-flip limit used with GRANDAB is 3 since it is shown in [53]

that for AB > 3 there is no improvement in FER performance with GRANDAB.

Fig. 3.3 shows that increasing the bit-flip limit beyond 8 bit-flips does not im-

35

2.5 3 3.5 4 4.5 5 5.5 6

10−5

10−4

10−3

10−2

10−1

100

Eb
N0

(dB)

FE
R

GRANDAB = 3
PGRANDAB = 3
PGRANDAB = 4
PGRANDAB = 5
PGRANDAB = 6
PGRANDAB = 7
PGRANDAB = 8

PGRAND

Figure 3.3: The FER Performance using GRANDAB, PGRANDAB and
PGRAND on Polar Code [128,105]

prove the FER performance beyond that of PGRAND. This leads us to anticipate

that there is an upper limit for AB with PGRAND which is significantly larger

than that with GRANDAB. Additionally, we can also see that PGRANDAB out-

performs GRANDAB even when using AB=3. This shows that PGRANDAB

produces better TEPs to that of GRANDAB.

On the other hand, there does not seem to be a direct correlation between

the increase in AB and the QPF of PGRANDAB. It can be seen from Fig. 3.4

that the QPF increases with the increase of AB from AB=3 to AB=5 and then

starts to decrease following that to reach the minimum QPF at AB=8. Hence,

we recommend the use of a high AB to reduce the QPF performance and improve

36

the FER performance of PGRANDAB.

After simulating BCH Code [127,106,7], BCH Code [63,45,7], CA-Polar Code

[128,105,4], CRC code [128,120,3] and Golay Code [24,12,8], we obtained AB

={8,7,8,4,6}.

2.5 3 3.5 4 4.5 5 5.5 6
100

101

102

103

104

105

106

107

Eb
N0

(dB)

Q
PF

GRANDAB = 3
PGRANDAB = 3
PGRANDAB = 4
PGRANDAB = 5
PGRANDAB = 6
PGRANDAB = 7
PGRANDAB = 8

PGRAND

Figure 3.4: The QPF performance of using GRANDAB with AB=3,
PGRANDAB with bit-flip limits [3,8] and PGRAND on CA-Polar Code
[128,105,7]

3.5 Experimental Results & Analysis

In this section, we discuss the performance of PGRAND on three codes of great

interest: PC, CRC and RLC. The simulations are done in an AWGN channel

using Eb

N0
as a measure for SNR. The SCL decoder applied on 5G NR Polar code

37

2.5 3 3.5 4 4.5 5 5.5 6
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb
N0

(dB)

FE
R

SGRAND
ORBGRAND

PGRAND
SCL L=16

Figure 3.5: Frame Error Rate vs Eb

N0
in an AWGN BPSK channel using SGRAND,

PGRAND and SCL on CA-Polar Code [128,105]
with a maximum number of queries= 108

uses a list size of 16 and is based on the SCL decoder that is presented in the

AFF3CT toolbox [1].

3.5.1 Performance of PGRAND with 5G NR CA-PC

Fig. 3.5 presents the FER performance and AQPF of SGRAND, ORBGRAND,

PGRAND and SCL on 5G NR CA-Polar Code [128,105]. At target FER of

10−6, we obtain 0.2 dB gain from PGRAND compared to ORBGRAND and a

0.1 dB loss in performance with PGRAND compared to SGRAND. We can also

deduce that PGRAND is capable of producing near ML TEPs. Even though

38

2.5 3 3.5 4 4.5 5 5.5 6 6.5
100

101

102

103

104

105

106

Eb/N0(dB)

Q
PF

SGRAND
ORBGRAND

PGRAND

Figure 3.6: QPF vs Eb

N0
in an AWGN BPSK channel using SGRAND, PGRAND,

ASCL and SCL on Polar Code [128,105]

SGRAND has a better FER performance than PGRAND and ORBGRAND,

every TEP generated by SGRAND depends on the previously generated TEP [15].

This dependency hinders the development of a low latency highly parallelized

hardware architecture for SGRAND. We can also see that SCL decoding fails to

compete with ORBGRAND, SGRAND and PGRAND at target FERs > 10−5.

However, with better channel conditions, SCL can outperform the performance

of ORBGRAND and PGRAND.

By analysing the AQPF performance of SGRAND, PGRAND and ORB-

GRAND from Fig. 3.5, we can see that SGRAND uses lower AQPF than ORB-

GRAND and PGRAND. The average queries per frame metric does not take into

39

consideration the considerable scheduling complexity and the number of compar-

isons needed with SGRAND. Additionally, we can observe that PGRAND pro-

duces less AQPF compared to ORBGRAND for Eb

N0
> 4.5 dB. At Eb

N0
= 6.5 dB,

using PGRAND results in a 50% reduction in AQPF compared to using ORB-

GRAND. Hence, using PGRAND, we can develop a highly parallelized decoder

that can exceed the FER and AQPF performance of ORBGRAND at high Eb

N0

and introduce a lower scheduling overhead to that seen with SGRAND. Since

there is no dependency in the generated TEPs, PGRAND lends itself to a highly

parallelized architecture that dispatches several PTEPs at the same time to pro-

duce BTEPs with many error patterns. SCL is not included in our AQPF analysis

since it is a fixed latency decoder [16].

3.5.2 Performance of PGRAND with Different Codebooks

Finally, we present in Figure 3.7 the FER performance of PGRAND on CA-Polar

[128,105], RLC [128,105] and CRC code [128,104]. It is seen that the performance

of PGRAND on RLC code is almost indistinguishable from the performance of

PGRAND on CA-Polar code and CRC code. This shows that using structured

codes provides no performance boost to PGRAND which makes PGRAND a

desirable candidate for a code agnostic decoder for any high rate code.

40

2.5 3 3.5 4 4.5 5 5.5
10−5

10−4

10−3

10−2

10−1

Eb
N0

(dB)

FE
R

CA-Polar [128,105]
RLC [128,105]
CRC [128,104]

Figure 3.7: Frame Error Rate vs Eb

N0
in an AWGN BPSK channel using PGRAND

on CA-Polar [128,105], RLC [128,104] and CRC code [128,105]

41

Chapter 4

GRAND Assisted Decoding

GRAND can be a desirable decoder for use with codes with no defined structure.

However, when we encounter a capacity-achieving error-correcting code, we can

also use GRAND assisted decoding (AGRAND) to reduce the latency of the

conventional decoder. This construction relies on adding a GRAND stage before

the conventional decoder. If GRAND succeeds to decode the codeword, the

message bypasses the conventional decoder stage and is directly outputted to the

receiver end. In case GRAND fails, the codeword is sent to the conventional

decoder with a latency of lconventional. This scheme can be seen in Figure 4.1 and

is explained in detail in section 4.1.

4.1 Construction of the Decoder Scheme

Unlike current GRAND constructions that exhaustively test all the TEPs in an

effort to decode the codeword, AGRAND tests as many error sequences as possi-

ble within the least time duration. In an effort to reduce the latency of AGRAND,

we limit the possible number of bit-flips (nb) with the GRAND algorithm to a

maximum of 2. This gives us a worst-case latency of bn/2c + 3 clock cycles for

the AGRAND block. The detailed latency division is presented in Table 4.1 [4].

42

Figure 4.1: The use of AGRAND in a digital communications system

4.1.1 AGRAND Algorithm

The pseudo-code for AGRAND is presented in Algorithm 5. AGRAND starts by

generating the noise patterns associated with nb bit flips (line 3). The generated

binary noise vector is XOR-ed to the hard modulated received signal (line 4) and

then checked for codebook membership by calculating the syndrome of the code-

word (line 5). If the syndrome calculation outputs the zero vector, the decoder

terminates and outputs the message (line 6). Else, we need to test for other error

patterns. A similar construction to the GRAND decoder discussed in [4] can be

considered. In case nb = 2, a dial structure needs to be implemented to compute

all the 2 bit-flip TEPs in bn/2c clock cycles. This dial structure is identical to

the dial structure discussed in [4].

Algorithm 5: AGRAND Algorithm
Input : ~y, HT , nb max

Output: ~̂v or ~̂y
1 nb ← 0 ;
2 while nb ≤ nb max do
3 ~e← GenerateNextNoisePattern (nb) ;
4 ~̂v = θ(~y) ⊕ ~e ;
5 if ~̂v ·HT = ~0 then
6 return ~̂v;
7 end
8 end
9 Conventional Decoder ← ~y;

If AGRAND fails to decode the codeword, the received signal is relayed to

43

Table 4.1: The latency of the different stages of AGRAND presented in[4]

Syndrome
Calculation

1 Bit-Flip
(nb = 1)

2 Bit-Flips
(nb = 2)

Syndrome
Check

Latency
(clock cycles) 1 1 bn/2c 1

the conventional decoder and new delays are introduced in the process. Even

though the worst-case latency of the decoder scheme increases to reach bn/2c +

3+ lconventional clock cycles, the average latency per frame (LPF) of the decoder is

reduced significantly. Simulations were conducted to generate the experimental

fraction of the frames AGRAND is capable of decoding (pex) with nb = {0, 1, 2}.

4.1.2 Percentage of Codewords Decoded by AGRAND

By using (2.8) and by referring to the binomial distribution, we approximated the

theoretical probability (pth) of obtaining 0, 1 and 2 errors. This approximation

assumes that all the 0,1 and 2 bit errors are decoded successfully. To that end,

we use the stationary bit-flip probability computed over a AWGN channel. The

value of the stationary bit-flip probability of the channel energy per transmitted

information bit, and the probability of nb = {0, 1, 2} at an Eb

N0
= 5.5dB are

calculated in (4.1).

Table 4.2: The probability of messages to be decoded by the AGRAND scheme
used with BM and SC decoding at an Eb

N0
= 5.5

BM BCH [127,106] SC PC [128,105] SC CA-PC [128,105+11]
nb pth pex pth pex pth pex

nb ≤ 0 0.386 0.385 0.362 0.358 0.486 0.481
nb ≤ 1 0.755 0.764 0.731 0.733 0.838 0.830
nb ≤ 2 0.93 0.927 0.918 0.920 0.964 0.962

44

BERin = Qfunc

(√
2×R× Eb

N0

)
= Qfunc

(√
2× 0.85× 3.55

)
= 0.00747

pth(nb = 0) = (1−BERin)n

= (0.99253)127

= 0.386

pth(nb = 1) =
(

N
1

)
BERin × (1−BERin)n−1

=
(

127
1

)
× 0.00747× (0.99253)126

= 0.369

pth(nb = 2) =
(

n
2

)
BER2

in × (1−BERin)n−2

=
(

127
2

)
× 0.007472 × (0.99253)125

= 0.175

(4.1)

Table 4.2 shows the pth and pex for BCH [127,106] code with GRAND assisted

BM (GBM), PC [128,105] with GRAND assisted successive cancellation (GSC)

decoding and CA-PC [128,105+11] with GSC. We can see that the probability

of obtaining a 1, 2 and 3 bit errors in the channel is consistent with the fraction

of frames AGRAND can decode with nb = {0, 1, 2}. For example, with nb ≤ 2,

there is a difference of 0.3% between pth and pex with GBM. This shows that

AGRAND is fully capable of decoding most of the error sequences for nb ≤ 2

with BCH code [127,106,7].

We obtain higher values for pth while decoding CA-PC with GSC compared to

the values of pth obtained using SC with PC and BM on BCH since the PC used

on CA-PC has a higher code rate. A higher code rate leads to an increase in the

BERin which, in turn, leads to an increase in pth. This increase in percentages

is also reflected in pex of CA-PC with GSC.

45

3 3.5 4 4.5 5 5.5
0

20

40

60

80

Eb

N0
(dB)

p e
x

(%
)

nb ≤ 0 nb ≤ 1 nb ≤ 2

Figure 4.2: The experimental fraction of messages that can be decoded by
AGRAND with varying Eb

N0
and nb

Alternatively, we present in Figure 4.2 the percentage of the total frames

decoded by GBM with BCH [127,106] while varying the Eb

N0
and nb. We can

observe that pex increases with the increase of Eb

N0
with nb ≤ 2 from 16.7% at

Eb

N0
= 3.0 to reach 93% at Eb

N0
= 5.5dB. Additionally, we can also observe an

increase in pex from 38.5% with nb ≤ 0 to 92.7% with nb ≤ 2 at an Eb

N0
= 5.5dB.

Hence, we can see that the new TEPs used with nb ≤ 2 are contributing towards

the decoding the codeword in AGRAND decoding.

4.1.3 Area and Power Considerations

Since AGRAND decoding is typically used as a stage preceding conventional

decoding, the conventional decoder can be clock-gated to reduce power consump-

tion. This reduction in power consumption comes at a cost of increasing the area

utilization on the device. This high area utilization originates from using a highly

46

3 3.5 4 4.5 5 5.5 6

10−2

10−1

100

Eb
N0

(dB)

FE
R

BM
GBM nb ≤ 1
GBM nb ≤ 2

Figure 4.3: BCH FER Performance

parallelized architecture for GRAND. [4].

4.2 Experimental Results & Analysis

4.2.1 Performance of AGRAND with BCH Decoding

In this section, we will investigate the use of AGRAND with a low latency ar-

chitecture for BCH decoding. We use a fixed latency parallel BCH decoder as a

baseline for our analysis.

We can see from Figure 4.3 that the addition of the GRAND decoder to the

decoding scheme improves the FER performance of BM. The improvement in

FER performance is seen with nb ≤ 2 and is more pronounced at high SNRs. For

example, at an FER = 10−2 and a nb ≤ 2, using GBM provides a 0.2dB gain in

performance as opposed to using the standalone BM decoder.

47

3 3.5 4 4.5 5 5.5 6

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Eb
N0

(dB)

LP
F

(c
lo

ck
cy

cl
es

)

BM
GBM nb ≤ 2
GBM nb ≤ 1

Figure 4.4: BCH Latency Performance

Using AGRAND with the BM decoder, however, increases the latency of the

decoder for low SNRs. The latency of the conventional BCH decoder is calculated

to be t + 3 by using a highly parallelized syndrome check, a highly parallelized

Chien search architecture [47] and a low latency BM architecture [45].

We can observe that the use of AGRAND with nb ≤ 1 alongside the BCH

decoding scheme increases the LPF by 13% at Eb

N0
= 3.0dB. This increase in

LPF is not seen at higher SNRs as we can see a reduction of LPF by 48% at an
Eb

N0
= 5.5dB with nb ≤ 1. Alternatively, we can also observe a higher reduction

in LPF by using nb ≤ 2 at high SNRs whereby the average latency is reduced by

60% at an Eb

N0
= 5.5dB.

The additional area utilized by AGRAND might offset all the benefits of the

small reduction in latency. Hence, it is desirable to use the new architectures for

parallelized BCH decoding to reduce power, latency and area at the same time.

For instance, the BCH decoder used on BCH [79,64,6] in [46] reduces the latency

48

by 52%–63% and achieves more than 70% power reduction compared to the fully

parallelized conventional BCH decoder. The latency and power reduction occur

with bit error rates less than 10−2 − 10−4.

4.2.2 Performance of AGRAND with SC Decoding

Recently, Arikan discovered the first family of capacity-achieving codes [7]. Arikan

proved that polar codes with infinite code lengths asymptotically achieve channel

capacity with successive cancellation decoding [7]. Since SC is capacity-achieving,

and the current SC decoders have a high LPF, it logically follows to use AGRAND

with SC decoding. We simulate 5G NR polar code [128,105] and 5G NR CA-

Polar [128,105+11] with GSC. Since the codes are of different code rates, the
Es

N0
is used in this section as a measure of SNR. Es

N0
normalizes the analysis with

respect to the code rate.

Figure 4.5 shows the FER performance of GSC. We start by analysing the

performance of PC with SC and GSC. GSC with nb ≤ 0 performs as well as

SC; however, the same cannot be said about GSC with nb ≤ 1 and nb ≤ 2. For

instance, at an FER of 10−3, we achieve a 0.25dB loss in performance by using

GSC with nb ≤ 1 as opposed to using GSC with nb ≤ 0 or SC. This degradation

in performance is more pronounced with nb ≤ 2, seeing as we achieve a loss of

1.5dB at an FER of 5× 10−2 compared to SC.

Since the minimum Hamming distance of PC [128,105] is 4, most of the degra-

dation of performance originates from a bit being marked as erroneous when in

fact it is not erroneous. For example, assuming a codeword has 3 bit errors, the

GRAND decoder might create a codeword with 4 bit errors ∈ codebook C with

nb ≤ 1. This type of error is more pronounced with nb ≤ 2 whereby we risk

converting codewords with 2 bit errors into codewords with 4 bit errors ∈ C.

49

2 2.5 3 3.5 4 4.5 5 5.5

10−4

10−3

10−2

10−1

100

Es
N0(dB)

FE
R

PC SC
PC GSC nb ≤ 0
PC GSC nb ≤ 1
PC GSC nb ≤ 2

CA-PC SC
CA-PC GSC nb ≤ 0
CA-PC GSC nb ≤ 1
CA-PC GSC nb ≤ 2

Figure 4.5: FER Performance of Polar Code [105,128] and CA-Polar Code
[105+11,128] with GRAND assisted SC Decoding

CA-PC [128,105+11] does not suffer from the same degradation in perfor-

mance as PC with the increase of nb since the extra CRC bits provide an addi-

tional way to verify the validity of the codeword. This comes at the cost of a

reduction in FER performance for SC decoding since we are effectively reducing

the number of parity bits.

Hence, AGRAND should not be used for codes with a low minimum Hamming

distance since the FER decoding performance might degrade quickly. In case we

opt to use AGRAND for a code with low Hamming distance, we need to append

extra CRC bits to prevent the decoder from changing the transmitted codeword

into another codeword belonging to the same codebook.

50

2 2.5 3 3.5 4 4.5 5 5.5
0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

Es
N0

(dB)

LP
F

(c
lo

ck
cy

cl
es

)

PC SC
PC GSC nb ≤ 0
PC GSC nb ≤ 1
PC GSC nb ≤ 2

CA-PC SC
CA-PC GSC nb ≤ 0
CA-PC GSC nb ≤ 1
CA-PC GSC nb ≤ 2

Figure 4.6: SC Code Latency Performance

The latency of SC decoding and the latency of GRAND assisted SC decoding

are presented in figure 4.6. The latency of the conventional SC decoder is ap-

proximated to be 264 clock cycles by using (4.2) with p = 16 and n = 128 [27].

Usually, the second term in (4.2) is ignored since it is very small compared to the

first term. Hence, our analysis remains valid for any degree of parallelism.

llist = (2)n+ n

p
log n

4p (4.2)

We can see that by using GSC with nb ≤ 2, the latency of SC decoding could

be decreased by 97% to reach 9 clock cycles at an Es

N0
= 5.14dB. This decrease in

LPF can be also seen with nb ≤ 0 and nb ≤ 1 where we achieve a 51% and 84%

51

reduction in LPF respectively at an Es

N0
= 5.14dB. Additionally, at lower SNRs,

we can observe a decrease in the LPF by 5%, 20% and 41% with nb ≤ 0, nb ≤ 1

and nb ≤ 2 respectively, at an Es

N0
= 3.0dB.

4.2.3 Performance of AGRAND with SCL Decoding

3 3.5 4 4.5 5 5.5

10−4

10−3

10−2

10−1

100

Eb
N0

(dB)

FE
R

SCL l = 2
SCL l = 4
SCL l = 8
SCL l = 32
GSCL l = 2
GSCL l = 4
GSCL l = 8
GSCL l = 32

Figure 4.7: SCL FER Performance on 5G NR Polar code with AGRAND

AGRAND is useful when the conventional decoder achieves a desirable FER

decoding performance but lacks a manageable latency. In the previous section,

we showed that using GSC with CA-PC does not lead to the degradation of FER

performance. In this section, we discuss the use of another decoder specifically

designed to be used with CA-PC. One of the major decoders that is commonly

52

used with short CRC aided polar code is the SCL decoder since it achieves ML

performance with with a large list size.

We started our analysis by verifying that the AGRAND stage does not af-

fect the FER performance of the decoding scheme. To that end, we simulated

SCL decoders with list size l = {2,4,8,32} on 5G NR CA-PC. Additionally, we

simulated the SCL decoders with added AGRAND decoding for each of the afore-

mentioned list sizes. The results in Figure 4.7 show that the FER performance is

not affected with the addition of the AGRAND stage regardless of list size. The

same cannot be said about the latency of the decoding scheme.

The latency of SCL decoding is computed to be 369 clock cycles per frame by

using (4.3) from [29], with n = 128, r = 0.82 and p = 16.

lSCL = (2 + r)n+ n

p
log n

4p (4.3)

The latency of SCL decoding and the latency of GSCL decoding are presented

in figure 4.8. We can see that, irrespective of list size, the latency of SCL decoding

could be decreased by 83.7% to reach 60 clock cycles at an Eb

N0
= 5.5dB by

using GSCL. Additionally, at lower SNRs, we can see a decrease of 9.3% in the

LPF at an Eb

N0
= 5.5dB. This clearly shows that AGRAND could be used with

SCL decoding of short CA-PC to reduce the LPF without degrading the FER

performance.

53

3 3.5 4 4.5 5 5.5
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

Eb
N0

(dB)

LP
F

(C
lo

ck
C

yc
le

s)

SCL
GSCL l=2
GSCL l= 4
GSCL l= 8
GSCL l= 32

Figure 4.8: SCL Code LPF Performance

54

Chapter 5

Conclusion

In this thesis, we lay the groundwork for several interesting variations of GRAND

decoding. Here, we summarize these contributions and discuss some avenues for

future research.

5.1 Thesis Summary

In Chapter 3, we introduce PGRAND, a new GRAND algorithm capable of de-

coding any high rate code and achieving near ML decoding capability. PGRAND

uses the quantized channel reliability information to determine the most likely

test error patterns. This is done by dividing the codeword into several partitions

and assigning a weight to each partition based on its reliability. It is shown that,

irrespective of the type of error-correcting code used, PGRAND performs equally

well with different codebooks. PGRAND also achieves a 0.2dB gain compared

to ORBGRAND at an FER of 10−4 as well as a 50% reduction in the QPF per-

formance at an Eb

N0
= 5.5dB. SGRAND slightly outperforms PGRAND at high

Eb

N0
at the cost of higher scheduling complexity and lower parallelizability with

SGRAND. The superior performance of PGRAND over ORBGRAND and the

lower scheduling complexity over SGRAND opens up new possibilities for the

use of PGRAND in ultra reliable low latency communication for short high rate

error-correcting code.

Chapter 4 continues to discuss the use of GRAND in order to assist other

55

structured code decoders in reducing the overall latency of the decoding scheme.

We begin by discussing the use of AGRAND with a highly parallelized conven-

tional BM decoder on BCH code [127,106]. Although the scheme could reduce the

LPF without impacting the FER performance, the area utilized by the AGRAND

decoder could be put to better use with the faster BCH decoder architectures as

in [46]. We move on to discuss a decoding scheme for GRAND assisted SC de-

coding of CA-polar [105+11,128] and polar [105,128]. It is noted that the FER

performance of polar code [105,128] is reduced with the use of AGRAND, while

that of CA-polar [105+11,128] remains the same. The main cause for the degra-

dation of FER performance is the low minimum Hamming distance of the code.

Additional CRC bits provide another way to verify the validity of the message.

Hence, the added CRC bits prevent the degradation in FER performance with a

large Nb value, but they still increase the code rate.

Hence, AGRAND is best used with a high latency decoder on a CA-code or

on a code with a large minimum Hamming distance. Finally, we discuss the usage

of AGRAND with SCL decoding on polar code with list size={2,4,8,32}. It is

shown that AGRAND is able to reduce the average latency per frame for the SCL

decoder by 83.7% at an Eb

N0
= 5.5 with no degradation in the FER performance.

These findings open up new avenues to use AGRAND as a latency and power

reduction scheme to be used with ML decoders.

5.2 Future Work

There are many avenues for future work. This thesis highlights the benefits of

using PGRAND and AGRAND; however, a highly parallelized architecture for

both of these decoders is not yet discussed.

56

5.2.1 PGRAND with New Channels

PGRAND currently supports additive noise Gaussian channels; however, suitable

adjustments can be made to extend its use for Gilbert-Elliot channels, binary

erasure channels (BEC), Rayleigh fading channels and optical channels. The

pattern generation could be modified to account for the error bursts in Gilbert-

Elliot channels, erasure of bits in a binary erasure channel or signal fading with

Rayleigh fading channels.

5.2.2 Hardware Implementation of PGRAND

In this thesis, we proposed PGRAND as a highly useful algorithm for decoding

short high rate codes. To verify our simulation results and obtain the actual area,

power and latency usage, we need to implement a highly parallelized architecture

for PGRAND. Since PGRAND allows for a high number of bit-flips to occur

during the decoding process, the development of a highly parallelized hardware

architecture remains a daunting task. A bit-true model has been created which

reduces the complexity of bit-flipping by using short segments and limiting the

number of bit-flips in each segment. In this bit-true model, we use the same

hardware to implement a 2 bit-flip and a 6 bit-flip in an 8 bit segment. The

remainder of the work should be focused on reducing the area utilized by this

decoder.

5.2.3 Hardware Implementation of AGRAND

A similar hardware architecture to the hardware implementation of GRAND

[4] and ORBGRAND [18] should be developed for AGRAND. Implementing

AGRAND on hardware allows us to fully determine the costs and benefits of

57

using AGRAND alongside other decoders. It is important to note that the area

usage, latency reduction and power dissipation of this module is of significant

interest in our analysis.

58

Bibliography

[1] A. Cassagne, O. Hartmann, M. Léonardon, K. He, C. Leroux, R. Tajan,

O. Aumage, D. Barthou, T. Tonnellier, V. Pignoly, B. Le Gal, and C. Jégo,

“AFF3CT: a fast forward error correction toolbox!” SoftwareX, vol. 10, p.

100345, Jul. 2019.

[2] “5G New Radio Polar Coding.” [Online]. Available:

https://www.mathworks.com/help/5g/gs/polar-coding.html

[3] 3GPP, “NR Multiplexing and channel coding,” 3rd Generation Partnership

Project (3GPP), Technical Specification (TS) 3GPP.38.212, Nov. 2021.

[4] S. M. Abbas, T. Tonnellier, F. Ercan, and W. J. Gross, “High-throughput

VLSI architecture for GRAND,” in 2020 IEEE Workshop on Signal Process-

ing Systems (SiPS), 2020, pp. 1–6.

[5] D. Feng, L. Lai, J. Luo, Y. Zhong, C. Zheng, and K. Ying, “Ultra-reliable and

low-latency communications: applications, opportunities and challenges,”

Science China Information Sciences, vol. 64, no. 2, p. 120301, Jan. 2021.

[6] X. You, C. X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang,

C. Zhang, Y. Jiang, J. J. Wang, M. Zhu, B. Sheng, D. Wang, Z. Pan, P. P.

Zhu, Y. Yang, Z. Liu, P. Zhang, X. Tao, S. Li, Z. Z. Chen, X. Ma, I. Chih-Lin,

S. Han, K. Li, C. Pan, Z. Zheng, L. Hanzo, X. S. Shen, Y. J. Guo, Z. Ding,

H. Haas, W. Tong, P. P. Zhu, G. Yang, J. J. Wang, E. G. Larsson, H. Q. Ngo,

W. Hong, H. Wang, D. Hou, J. Chen, Z. Z. Chen, Z. Hao, G. Y. Li, R. Tafa-

zolli, Y. Gao, H. V. Poor, G. P. Fettweis, Y. C. Liang, Y. Xiaohu, W. Cheng-

xiang, H. Jie, G. Xiqi, W. Michael, H. Yongming, Z. Chuan, J. Yanxiang,

59

Z. Min, W. Dongming, P. Zhiwen, Z. Pengcheng, Y. Yang, L. I. U. Zen-

ing, Z. Ping, T. Xiaofeng, L. Shaoqian, M. Xinying, H. Shuangfeng, L. Ke,

P. Chengkang, H. Lajos, S. Xuemin, G. Y. Jay, D. Zhiguo, T. Wen, Z. Peiy-

ing, Y. Ganghua, W. Jun, L. E. G, N. Hien, H. Wei, W. Haiming, H. Debin,

C. Jixin, C. Zhe, H. Zhang-cheng, L. Geoffrey, T. Rahim, G. Yue, P. Vin-

cent, F. Gerhard, L. Ying-chang, Z. Zhang, M. Wang, Y. Huang, C. Zhang,

Z. Pan, P. P. Zhu, Y. Yang, Z. Liu, and P. Zhang, “Towards 6G wireless

communication networks: Vision, enabling technologies, and new paradigm

shifts,” SCIENCE CHINA Information Sciences, vol. 020300, no. 2016, pp.

1–76, 2020.

[7] E. Arikan, “Channel Polarization: A Method for Constructing Capacity-

Achieving Codes for Symmetric Binary-Input Memoryless Channels,” IEEE

Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[8] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-

correcting coding and decoding: Turbo-codes. 1,” in Proceedings of ICC ’93

- IEEE International Conference on Communications, 1993, pp. 1064–1070

vol.2.

[9] R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Transactions on

Information Theory, vol. 8, no. 1, pp. 21–28, 1962.

[10] 3GPP, “Multiplexing and channel coding (FDD),” 3rd Generation Partner-

ship Project (3GPP), Technical Specification (TS) 3GPP.25.212, Jul. 2021.

[11] P. Elias, “Coding for two noisy channels,” Information Theory (C. Cherry,

ed.),, pp. 61–76, 1956.

60

[12] M. P. Fossorier and S. Lin, “Soft decision decoding of linear block codes

based on ordered statistics,” IEEE International Symposium on Information

Theory - Proceedings, vol. 41, no. 5, p. 395, 1994.

[13] C. Yue, M. Shirvanimoghaddam, B. Vucetic, and Y. Li, “A revisit to

ordered statistic decoding: distance distribution and decoding rules,”

arXiv:2004.04913, Apr. 2020.

[14] K. R. Duffy, J. Li, and M. Médard, “Capacity-Achieving Guessing Ran-

dom Additive Noise Decoding,” IEEE Transactions on Information Theory,

vol. 65, no. 7, pp. 4023–4040, Jul. 2019.

[15] A. Solomon, K. R. Duffy, and M. Médard, “Soft Maximum Likelihood De-

coding using GRAND,” in ICC 2020 - 2020 IEEE International Conference

on Communications (ICC), 2020, pp. 1–6.

[16] I. Tal and A. Vardy, “List Decoding of Polar Codes,” IEEE Transactions on

Information Theory, vol. 61, no. 5, pp. 2213–2226, 2015.

[17] K. R. Duffy, “Ordered Reliability Bits Guessing Random Additive Noise De-

coding,” in ICASSP 2021 - 2021 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP). Toronto, ON, Canada: IEEE,

Jun. 2021, pp. 8268–8272.

[18] S. M. Abbas, T. Tonnellier, F. Ercan, M. Jalaleddine, and W. J. Gross,

“High-Throughput VLSI Architecture for Soft-Decision Decoding with OR-

BGRAND,” in ICASSP, 2021, pp. 8288–8292.

[19] C. E. Shannon, “A mathematical theory of communication,” Bell System

Technical Journal, vol. 27, no. 3, pp. 379–423, Jul. 1948.

61

[20] R. H. Morelos-Zaragoza, The art of error correcting coding, 2nd ed. Chich-

ester ; Hoboken, NJ: John Wiley, 2006.

[21] G. A. Barnard and R. M. Fano, Transmission of Information: A Statistical

Theory of Communications. Cambridge, Mass.: MIT Press, 1962.

[22] R. G. Gallager, “The Random Coding Bound Is Tight for the Average Code,”

IEEE Transactions on Information Theory, vol. 19, no. 2, p. 244, 1973.

[23] Y. Fan, S. Ling, H. Liu, J. Shen, and C. Xing, “Cumulative Distance Enu-

merators of Random Codes and their Thresholds,” arXiv:1212.5679, Dec.

2012.

[24] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplex-

ing and channel coding,” 3rd Generation Partnership Project (3GPP), Tech-

nical Specification (TS) 3GPP.36.212, Aug. 2021.

[25] I. Tal and A. Vardy, “How to Construct Polar Codes,” IEEE Transactions

on Information Theory, vol. 59, no. 10, pp. 6562–6582, Oct. 2013. [Online].

Available: http://ieeexplore.ieee.org/document/6557004/

[26] C. Condo, F. Ercan, and W. J. Gross, “Improved successive cancellation flip

decoding of polar codes based on error distribution,” in 2018 IEEE Wireless

Communications and Networking Conference Workshops (WCNCW), Apr.

2018, pp. 19–24.

[27] O. Dizdar and E. Arikan, “A High-Throughput Energy-Efficient Im-

plementation of Successive Cancellation Decoder for Polar Codes Using

Combinational Logic,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 63, no. 3, pp. 436–447, Mar. 2016. [Online]. Available:

http://ieeexplore.ieee.org/document/7419248/

62

[28] K. Niu and K. Chen, “CRC-Aided Decoding of Polar Codes,” IEEE Com-

munications Letters, vol. 16, no. 10, pp. 1668–1671, Oct. 2012.

[29] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross, and A. Burg, “Hard-

ware architecture for list successive cancellation decoding of polar codes,”

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 8,

pp. 609–613, Aug. 2014.

[30] X. Liang, J. Yang, C. Zhang, W. Song, and X. You, “Hardware Efficient

and Low-Latency CA-SCL Decoder Based on Distributed Sorting,” in 2016

IEEE Global Communications Conference (GLOBECOM), 2016, pp. 1–6.

[31] S. A. Hashemi, C. Condo, and W. J. Gross, “Fast and Flexible Successive-

Cancellation List Decoders for Polar Codes,” in IEEE Transactions on Signal

Processing, 2017, pp. 5756–5769.

[32] P. Koopman, “Best CRC Polynomials,” 2018. [Online]. Available:

https://users.ece.cmu.edu/ koopman/crc/

[33] R. Bose and D. Ray-Chaudhuri, “On a class of error correcting binary group

codes,” Information and Control, vol. 3, no. 1, pp. 68–79, Mar. 1960.

[34] A. Hocquenghem, “Codes correcteurs d’erreurs,” Chiffers, vol. 2, pp. 147–

156, 1959.

[35] M. Mao, Y. Cao, S. Yu, and C. Chakrabarti, “Optimizing Latency, Energy,

and Reliability of 1T1R ReRAM Through Cross-Layer Techniques,” IEEE

Journal on Emerging and Selected Topics in Circuits and Systems, vol. 6,

no. 3, pp. 352–363, 2016.

63

[36] S. Gregori, A. Cabrini, O. Khouri, and G. Torelli, “On-chip error correcting

techniques for new-generation flash memories,” Proceedings of the IEEE,

vol. 91, no. 4, pp. 602–616, 2003.

[37] S. H. Kang, A. M. Technology, Q. T. Incorporated, and S. Diego, “Embedded

STT-MRAM for Energy-efficient and Cost-effective Mobile Systems,” 2014

Symposium on VLSI Technology (VLSI-Technology): Digest of Technical

Papers, vol. 115, pp. 2013–2014, 2014.

[38] S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and Their Applica-

tions. Wiley-IEEE Press, 2010.

[39] I. T. Union, “Forward error correction for high bit-rate DWDM submarine

systems,” SERIES G.975.1, vol. 975, pp. 1–58, 2005.

[40] J. L. Massey, “Shift-Register Synthesis and BCH Decoding,” IEEE Trans-

actions on Information Theory, vol. 15, no. 1, pp. 122–127, 1969.

[41] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A method for

solving key equation for decoding goppa codes,” Information and Control,

vol. 27, no. 1, pp. 87–99, 1975.

[42] D. Gorenstein, W. W. Peterson, and N. Zierler, “Two-error correcting Bose-

Chaudhuri codes are quasi-perfect,” Information and Control, vol. 3, no. 3,

pp. 291–294, 1960.

[43] E. R. Berlekamp, “Non-binary BCH decoding,” North Carolina State Uni-

versity. Dept. of Statistics, Tech. Rep., 1966.

64

[44] R. Chien, “Cyclic decoding procedures for Bose- Chaudhuri-Hocquenghem

codes,” IEEE Transactions on Information Theory, vol. 10, no. 4, pp. 357–

363, Oct. 1964.

[45] H.-C. C. Chang and C. B. Shung, “New serial architecture for the Berlekamp-

Massey algorithm,” IEEE Transactions on Communications, vol. 47, no. 4,

pp. 481–483, 1999.

[46] S. Choi, H. K. Ahn, B. K. Song, J. P. Kim, S. H. Kang, and S. Jung,

“A Decoder for Short BCH Codes With High Decoding Efficiency and Low

Power for Emerging Memories,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 27, no. 2, pp. 387–397, Feb. 2019.

[47] J. Cho and W. Sung, “Strength-Reduced Parallel Chien Search Architecture

for Strong BCH Codes,” IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 55, no. 5, pp. 427–431, 2008.

[48] M. Yin, M. Xie, and B. Yi, “Optimized algorithms for binary BCH codes,”

in Proceedings - IEEE International Symposium on Circuits and Systems,

2013, pp. 1552–1555.

[49] Y. Wu and C. N. Hadjicostis, “Soft-decision decoding using ordered recod-

ings on the most reliable basis,” IEEE Transactions on Information Theory,

vol. 53, no. 2, pp. 829–836, 2007.

[50] ——, “Soft-decision decoding of linear block codes using preprocessing and

diversification,” IEEE Transactions on Information Theory, vol. 53, no. 1,

pp. 378–393, 2007.

[51] C. Yue, M. Shirvanimoghaddam, Y. Li, and B. Vucetic, “Segmentation-

discarding ordered-statistic decoding for linear block codes,” in 2019 IEEE

65

Global Communications Conference, GLOBECOM 2019 - Proceedings, 2019,

pp. 1–6.

[52] K. R. Duffy and M. Médard, “Guessing random additive noise decoding

with soft detection symbol reliability information - SGRAND,” in IEEE

International Symposium on Information Theory - Proceedings, 2019, pp.

480–484.

[53] K. R. Duffy, A. Solomon, K. M. Konwar, and M. Médard, “5G NR CA-polar

maximum likelihood decoding by GRAND,” in 2020 54th Annual Conference

on Information Sciences and Systems (CISS), Mar. 2020, pp. 1–5.

66

