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Abstract— Guessing random additive noise decoding (GRAND)
is a recently proposed universal maximum likelihood (ML)
decoder for short-length and high-rate linear block codes. Soft-
GRAND (SGRAND) is a prominent soft-input GRAND vari-
ant, outperforming the other GRAND variants in decoding
performance; nevertheless, SGRAND is not suitable for paral-
lel hardware implementation. Ordered Reliability Bits-GRAND
(ORBGRAND) is another soft-input GRAND variant that is
suitable for parallel hardware implementation; however, it has
lower decoding performance than SGRAND. In this article,
we propose List-GRAND (LGRAND), a technique for enhancing
the decoding performance of ORBGRAND to match the ML
decoding performance of SGRAND. Numerical simulation results
show that LGRAND enhances ORBGRAND’s decoding perfor-
mance by 0.5–0.75 dB for channel codes of various classes at a
target frame error rate (FER) of 10−7. For linear block codes
of length 127/128 and different code rates, LGRAND’s VLSI
implementation can achieve an average information throughput
of 47.27–51.36 Gb/s. In comparison to ORBGRAND’s VLSI
implementation, the proposed LGRAND hardware has a 4.84%
area overhead.

Index Terms— Guessing random additive noise decoding
(GRAND), maximum likelihood (ML) decoding, ordered reliabil-
ity bits GRAND (ORBGRAND), soft GRAND (SGRAND), ultra
reliable and low-latency communication (URLLC).

I. INTRODUCTION

ULTRA reliable low-latency communication (URLLC) is
considered an important use case of 5G and future

communication networks because it enables applications that
require high reliability and very low latency. Some of these
emerging applications include augmented and virtual real-
ity [1], intelligent transportation systems (ITS) [2], the Internet
of Things (IoT) [3], [4], and machine-to-machine communi-
cation (M2M) [5]. These novel applications benefit from the
use of short-length, high-rate error-correcting codes. Guessing
random additive noise decoding (GRAND) [6] is a recently
proposed universal maximum likelihood (ML) decoding tech-
nique for these short-length and high-rate linear block codes.
GRAND is a noise-centric and code-agnostic decoder, which
implies that, unlike traditional decoding techniques, GRAND
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attempts to guess the noise that corrupted the codeword during
transmission through the communication channel. Therefore,
GRAND can be used with both structured codes and unstruc-
tured codes, which are stored in a dictionary, provided that
there exists a method to verify codebook membership of
a given vector [7]. Furthermore, when used with random
codebooks, GRAND achieves capacity [6].

GRAND and its variants work on the premise of guess-
ing the channel-induced noise by first generating test error
patterns (TEPs) (e), then applying them to the received
hard-demodulated vector of channel observation values ( ŷ),
and finally querying the resulting vector ( ŷ⊕ e) for codebook
membership. The order in which these TEPs are generated
is the primary difference between the GRAND variants.
GRAND with ABandonment (GRANDAB) [6], [8] is a
hard decision input variant that generates TEPs in ascend-
ing Hamming weight order, up to the weight AB. Ordered
reliability bits GRAND (ORBGRAND) [9] and soft GRAND
(SGRAND) [10] are soft-input variants that efficiently leverage
soft information [channel observation values ( y)], resulting
in improved decoding performance compared to the decod-
ing performance of the hard-input GRANDAB. In com-
parison to other code-agnostic channel code decoders such
as brute-force ML decoding and ordered statistic decoding
(OSD) [11], [12], GRAND offers a low-complexity decoding
solution for short-length and high-rate channel codes. The
scope of this work is restricted to short channel codes with
high code rates because GRAND and its variants are proposed
as ML decoders for short-length and high-rate channel codes.

Fig. 1(a) compares the decoding performance of different
variants of GRAND with Berlekamp-Massey (B-M) [13],
[14] decoder, OSD (Order = 2), and ML decoding of
Bose–Chaudhuri–Hocquenghem (BCH) code (127, 106). The
ML decoding results are obtained from [15]. The numerical
simulation results presented in this work are based on BPSK
modulation over a additive white Gaussian noise (AWGN)
channel. While both soft-input variants of GRAND
(ORBGRAND and SGRAND) outperform the hard-input
B-M decoder, SGRAND achieves ML performance similar
to OSD. Fig. 1(b) compares the decoding performance of
various GRAND variants for decoding 5G new radio (NR)
cyclic redundancy check (CRC)-aided polar (CA-Polar) code
(128, 105 + 11). Furthermore, the decoding performance of
state-of-the-art soft-input decoders such as the CRC-aided
successive cancellation list (CA-SCL) decoder [16], [17]
and OSD (Order = 2) is included for reference. The
ORBGRAND and SGRAND outperform the hard-input
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Fig. 1. Comparison of the decoding performance of different GRAND
variants for (a) BCH Code (127, 106) and (b) 5G-NR Polar Code
(128, 105 + 11).

GRANDAB (AB = 3) variant in decoding performance, and
the SGRAND achieves ML decoding performance similar to
OSD, as shown in Fig. 1(b).

As shown in Fig. 1, SGRAND outperforms the other
GRAND variants in terms of decoding performance; however,
SGRAND is not suitable for parallel hardware implementation.
The TEPs generated by SGRAND are interdependent, and
their query order varies with each received vector of channel
observation values ( y) (explained in Section III-A). As a
result, SGRAND does not lend itself to efficient parallel
hardware implementation, and a sequential hardware imple-
mentation will result in high decoding latency, rendering it
unsuitable for applications which require ultra low latency.
The ORBGRAND, on the other hand, generates TEPs in a
predetermined logistic weight (LW) order based on integer
partitioning. The TEPs generated are mutually independent
and can be generated in parallel. ORBGRAND is thus highly
parallelizable and well suited to parallel hardware implemen-
tation. In [18], a VLSI architecture for ORBGRAND for
n = 128 is presented, which can perform 1.16× 105 codebook
membership queries in 4226 clock cycles due to parallel
generation of TEPs in hardware.

In this article, we propose List-GRAND (LGRAND), a tech-
nique for boosting the decoding performance of ORBGRAND
in order to achieve ML decoding performance comparable
to SGRAND. The idea behind the proposed LGRAND is
to generate a list during the decoding process and choose
the candidate with the highest likelihood to be the final
one. The proposed LGRAND technique is not limited to the
ORBGRAND TEP generation; rather, it can be used with
any GRAND variant that uses a suboptimal TEPs generation
scheme. However, since the ORBGRAND TEP generation is
hardware friendly and the ORBGRAND archives good error
decoding performance as a soft-input decoder, we use the
ORBGRAND as a baseline to present our proposed LGRAND
technique to achieve the decoding performance similar to an
ML decoder such as SGRAND.

The proposed LGRAND introduces parameters that can
be adjusted to match the target decoding performance and

complexity budget of a specific application. For channel codes
of different classes (BCH codes [19], [20], CRC codes [21]
and CA-Polar codes [22]), the proposed LGRAND achieves
decoding performance similar to SGRAND. LGRAND also
achieves a 0.5–0.75 dB performance gain over ORBGRAND
at a target frame error rate (FER) of 10−7. Furthermore,
because the proposed LGRAND algorithm is based on ORB-
GRAND, LGRAND lends itself well to parallel hardware
implementation. The VLSI implementation results show that
the proposed LGRAND can achieve an average information
throughput of 47.27–51.36 Gb/s for linear block codes of
length 127/128 and different code rates. In comparison to the
ORBGRAND hardware, the proposed LGRAND hardware has
a 4.84% area overhead. Furthermore, as long as the length and
rate constraints are met, the proposed LGRAND hardware can
be used to decode any code.

The rest of this work is structured as follows. Section II con-
tains preliminary information on GRAND and ORBGRAND.
Section III discusses the generation of TEPs as well as
the computational complexity of GRAND and its vari-
ants. Section IV presents the proposed LGRAND technique,
which is used to improve the decoding performance of
ORBGRAND. The numerical simulation results are presented
in Section V. Section VI describes the proposed LGRAND
hardware architecture as well as the implementation results.
Finally, in Section VII, concluding remarks are presented.

II. PRELIMINARIES

A. Notations

Matrices are denoted by a bold upper-case letter (M),
while vectors are denoted with bold lower-case letters (v).
The transpose operator is represented by �. The number of
k-combinations from a given set of n elements is noted by(n

k

)
. 1n is the indicator vector where all locations except the

nth are 0 and the nth is 1. All the indices start at 1. For
this work, all operations are restricted to the Galois field with
two elements, noted F2. Furthermore, we restrict ourselves to
(n, k) linear block codes, where n is the code length and k is
the code dimension.

B. GRAND Decoding

For an (n, k) linear block code with codebook C, a vector u
of size k maps to a vector c of size n, and the ratio R � (k/n)
is known as the code rate. Furthermore, there exists a k × n
matrix G called generator matrix (c � u ·G) and an (n−k) ×
n matrix H called parity-check matrix.

GRAND [6] attempts to guess the noise that corrupted the
transmitted codeword (c) as it passed through the communi-
cation channel. To that end, GRAND first generates the TEPs
(e) starting from the most likely up to the least likely pattern
taking into account the channel model. This is followed by
combining the generated TEPs with the hard decided received
vector of channel observation values (demodulated symbols)
ŷ, and evaluating if the resulting vector ŷ ⊕ e is a member
of the codebook (C). If the resulting vector is a member of
the codebook, the decoding is assumed to be successful, and
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Algorithm 1 ORBGRAND Algorithm

e is declared as the guessed noise, whereas ĉ � ŷ ⊕ e is
outputted as the estimated codeword.

GRAND can be used with any codebook as long as there
is a method for validating a vector’s codebook membership.
For any linear codebook (C), the codebook membership of a
vector can be verified using the underlying code’s parity-check
matrix H , as follows:

∀ c ∈ C, H · c� = 0. (1)

For other nonstructured codebooks, stored in a dictionary,
the codebook membership of a vector can be checked with a
dictionary lookup. For the rest of the discussion, we restrict
ourselves to (n, k) linear block codes.

C. ORBGRAND Decoding

ORBGRAND [9] is centered around generating distinct
integer partitions of a particular LW, and these integer parti-
tions are then used to generate TEPs (e). The LW corresponds
to the sum of the indices of nonzero elements in the TEPs [9].
For example, e = [1, 1, 0, 0, 1, 0] has a Hamming weight of 3,
whereas the LW is 1+ 2 + 5 = 8.

An integer partition λ of a positive integer m, noted λ =
(λ1, λ2, . . . , λP ) � m where λ1 > λ2 > · · · > λP is the
multiset of positive integers λi (∀i ∈ [1, P]) that sum to m.
If all parts λi (∀i ∈ [1, P]) of the integer partition are different,
the partition is called distinct. Note that the Hamming weight
of the generated TEP (e) obtained from an integer partition
λ = (λ1, λ2, . . . , λP ) with P elements is P . ORBGRAND
considers the maximum LW for an (n, k) linear block code
to be (n(n + 1)/2) [LWmax = (n(n + 1)/2)]. Furthermore,
the generated TEPs have a maximum Hamming weight of n
(HWmax = n). It should be noted that only distinct integer
partitions are considered for generating TEPs, and all the parts
(λi ) of the integer partitions are less than or equal to n [λi ≤ n
(∀i ∈ [1, P])] [9].

Fig. 2. TEP generation for GRAND for n = 6. (a) Top: TEP generation
for GRANDAB (AB = 3). (b) Middle: TEP generation for ORBGRAND
(LWmax = 21). (c) Bottom: TEP generation for ORBGRAND (LWmax = 6).

Algorithm 1 summarizes the steps of the ORBGRAND.
The inputs to the algorithm are the vector of channel obser-
vation values [log-likelihood ratios (LLRs)] y of size n,
an (n− k) × n parity-check matrix H , an n × k matrix G−1,
where G−1 refers to the inverse of the generator matrix G of
the code such that G ·G−1 is the k × k identity matrix, and the
maximum Hamming weight HWmax as well as the maximum
LW considered LWmax.

The algorithm begins with evaluating the received vector’s
( ŷ) codebook membership (line 1); if it is satisfied (1), the
original message is retrieved (line 2); otherwise, y is sorted in
ascending order according to the absolute values of the LLRs
(| yi | ≤ | y j | ∀i < j ), and the relevant indices are recorded
into a permutation vector ind (line 4). This is followed by
generating all the integer partitions for each LW (line 7).
The function generateErrorPattern generates a TEP (e) using
integer partition (l), which is then ordered using the permu-
tation vector ind (line 10). For instance, the generated error
pattern, for n = 6 with l = (1, 2) and ind = (2, 6, 5, 4, 3, 1),
will be e = (0, 1, 0, 0, 0, 1). The generated TEPs are then
applied sequentially to the hard decision vector ( ŷ), which
is obtained from y. The resulting vector ( ŷ ⊕ e) is then
queried for codebook membership (line 11). If the codebook
membership criterion (1) is met, then e is the guessed noise
and ĉ � ŷ ⊕ e is the estimated codeword. Otherwise, either
the remaining error patterns for that LW or larger LWs are
considered. Finally, using G−1 (line 12), the original message
(û) is retrieved from the estimated codeword, and the decoding
process is terminated.

III. GRAND: ANALYSIS OF TEP GENERATION

AND COMPUTATIONAL COMPLEXITY

This section describes the TEP (e) generating scheme
and computational complexity analysis for GRAND and its
variants.

A. TEP Generation for GRAND

Combining a TEP with the hard-demodulated received
vector ŷ corresponds to flipping certain bits of that vector
( ŷ). GRANDAB [6] is a hard decision input version of
GRAND that generates TEPs in increasing Hamming weight
order up to a Hamming weight AB. The TEPs generated in
Hamming weight order for n = 6 and AB = 3 are depicted
in Fig. 2(a), where each column corresponds to a TEP and
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Fig. 3. TEP generation for SGRAND. (a) Top: ML order for y1 = [1.0,
2.1, 3.2, 4.3, 5.4, 6.5]. (b) Middle: ML order for y2 = [1.3, 2.5, 3.6,
4.9, 5.8, 6.1]. (c) Bottom: ML order for y3 = [1.8, 2.0, 3.9, 4.1, 5.6, 3.3].

Fig. 4. Comparison of decoding performance and average complexity
GRANDAB, ORBGRAND, and SGRAND (Queriesmax = 5 × 107) decoding
of CRC Code (128, 104). (a) FER. (b) Avg. queries.

a dot corresponds to a flipped bit location of the received
hard-demodulated vector ( ŷ).

On the other hand, ORBGRAND is a soft-input GRAND
variant that uses the LW order to generate TEPs. The TEPs
generated by ORBGRAND with LWmax = 21 are shown in
Fig. 2(b). The integer partitions of an integer m (∀m ∈ [1, 21])
are generated sequentially and these integer partitions are then
used to generate TEPs. For n = 6 and LWmax = 21, 63 TEPs
are generated with the maximum Hamming weight (HWmax) of
the generated TEPs being 6. However, when LWmax is reduced
from 21 to 6 the number of TEPs is reduced to 13, as shown
in Fig. 2(c). As a result, the parameter LWmax can be adjusted
to limit the maximum number of TEPs.

SGRAND [10] incorporates all soft information into the
decoder to generate the ML order of TEPs, and an efficient
method for generating the ML order can be found in [23].
The ML order for generating TEPs for n = 6 is shown in
Fig. 3. The ML order for TEP generation is dependent on
y and changes with each new vector received (we refer the
reader to [10, Algorithm 2] for further details about ML order
TEP generation). Let y1 = [1.0, 2.1, 3.2, 4.3, 5.4, 6.5] be the
received vector of channel observation values at time instant 1,
and the ML order corresponding to y1 is shown in Fig. 3(a).
At the second time step, the received vector from the channel
is y2 = [1.3, 2.5, 3.6, 4.9, 5.8, 6.1] and the corresponding ML
order for TEP generation is depicted in Fig. 3(b). Unlike
ORBGRAND, even though the order of the absolute value

of LLRs is the same for y1 and y2, the TEPs are generated
in a different order for y1 and y2. Similarly, as shown in
Fig. 3(c), the ML order changes at a third time instant when
y3 = [1.8, 2.0, 3.9, 4.1, 5.6, 3.3] changes.

As a result of the changing TEP query order with each
received vector from the channel ( y) and the TEP interde-
pendence [10], SGRAND does not lend itself to efficient
parallel hardware implementation. Alternatively, developing a
sequential hardware implementation for SGRAND will result
in a high decoding latency, which is unsuitable for applications
requiring ultralow latency. ORBGRAND, on the other hand,
generates TEPs in the predetermined LW order. Therefore,
ORBGRAND is far better suited to parallel hardware imple-
mentation than SGRAND.

B. Computational Complexity of GRAND

The computational complexity of GRAND and its vari-
ants can be expressed in terms of the number of codebook
membership queries required. In GRAND and its variants,
a codebook membership query consists of simple operations
such as bit-flips and a syndrome check [codebook membership
verification (1)]. Furthermore, the complexity can be divided
into two categories: worst case complexity, which corresponds
to the maximum number of codebook membership queries
required; and average complexity, which corresponds to the
average number of codebook membership queries required.
For a code length of n = 128, the worst case number of
queries for GRANDAB (AB = 3) decoder is 349 632 queries
(
∑AB

i=1

(n
i

)
[6]). The worst case number of queries for the

ORBGRAND decoder depends on the value of the parameter
LWmax; for example, with LWmax = 96 and n = 128,
the worst case complexity is 3.69 × 106 queries [24]. For
SGRAND [10], the parameter Queriesmax (Queriesmax = 5 ×
107; see Fig. 4), which represents the maximum number of
queries allowed, determines the worst case complexity.

Fig. 4 compares the FER performance and average com-
plexity for different GRAND variants for decoding CRC
Code (128, 104). As seen in Fig. 4(b), as channel conditions
improve, the average complexity of GRAND and its variants
decreases sharply because transmissions subject to light noise
are decoded quickly [6], [9], [10]. In terms of error decoding
performance, SGRAND outperforms other GRAND variants
by generating TEPs in ML order [10], [23]. As a result,
SGRAND achieves ML decoding performance while requiring
the fewest average number of codebook membership queries,
as shown in Fig. 4. However, as explained previously, the
SGRAND is not suited for parallel hardware implementation.

IV. ENHANCING THE ERROR DECODING

PERFORMANCE OF ORBGRAND

In this section, we will look at techniques for boost-
ing ORBGRAND’s decoding performance to match the ML
decoding performance of SGRAND. We begin by analyzing
the effect of ORBGRAND’s parameters on the decoding
performance, and then we propose a list-based technique
to improve ORBGRAND’s decoding performance. The pro-
posed LGRAND algorithm introduces parameters that can be
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Fig. 5. Comparison of decoding performance of ORBGRAND (LWmax,
HWmax) decoding of BCH Code (63, 45).

Fig. 6. Maximum number of queries (worst case complexity) comparison
for ORBGRAND decoding of BCH Code (63, 45).

tweaked to match the ML decoding performance of SGRAND
as well as the target decoding performance and complexity
budget of a specific application.

A. Parametric Analysis of ORBGRAND

LWmax and HWmax are two important ORBGRAND parame-
ters that impact both decoding performance and the maximum
number of codebook membership queries required (the worst
case complexity) by ORBGRAND. The impact of parameters
(LWmax, HWmax) on the decoding performance and the worst
case complexity of ORBGRAND for decoding BCH code
(63,45) with BPSK modulation over an AWGN channel is
depicted in Figs. 5 and 6, respectively. The performance of
ORBGRAND decoding is improved by increasing the values
of the parameters LWmax and HWmax; however, as shown in
Fig. 5, the worst case complexity also increases.

B. Proposed LGRAND

Algorithm 2 describes the proposed LGRAND decoding
approach. The inputs of LGRAND are identical to those of
ORBGRAND, with the exception of an extra parameter δ
(threshold for LW). Unlike ORBGRAND, which terminates
decoding as soon as any vector ( ŷ ⊕ e) fulfills the codebook
membership criterion (1), LGRAND generates a list (L) of

Algorithm 2 LGRAND Algorithm

Fig. 7. TEP generation for LGRAND for (n = 12, LWmax = 12,
HWmax = 4). (a) Top: Codebook membership criterion (1) satisfied by 21st
TEP (e) with LW = 8 and HW = 2 (red rectangle). (b) Middle: Checking
additional TEPs for LGRAND. (δ = 2) (green rectangle). (c) Bottom: Restrict-
ing HW of additional TEPs to ≤2 [δ = 2 and � = HammingWeight (e)]
(brown rectangle).

estimated codewords (ĉ) and selects the most likely one
[arg maxĉ∈L p(y|ĉ)] as the final estimated codeword ĉfinal.

LGRAND proceeds similar to ORBGRAND by sorting y
in ascending order of absolute value (| yi | ≤ | y j | ∀i < j ), and
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Fig. 8. Worst case complexity for ORBGRAND and LGRAND decoding of
linear block codes of length n. (a) n = 127. (b) n = 128.

the corresponding indices are recorded in a permutation vector
denoted by ind (line 4). Following this, integer partitions of an
LW i (∀i ∈ [0,�], where � = LWmax) are generated. Then,
LGRAND generates TEPs (e) by using the generated integer
partitions and the TEPs are ordered using the permutation
vector ind (line 10). Note that the Hamming weight of the
generated TEPs is restricted to ≤ � [� is initialized to HWmax

(line 5)]. These TEPs are then applied to ŷ to check for
codebook membership criterion (1). Whenever a vector ŷ ⊕ e
meets the codebook membership criterion (1), LGRAND adds
the vector ŷ ⊕ e to the list L (line 13).

Fig. 7(a) depicts the ORBGRAND TEPs for parameters
n = 12, LWmax = 12, HWmax = 4, and δ = 2. Suppose
that the 21st TEP, which corresponds to an integer partition
of 8 (LW = 8) and has a Hamming weight of 2, fulfills the
codebook membership criterion (1). Rather than stopping the
decoding process, LGRAND checks additional TEPs corre-
sponding to LW = 9 and LW = 10 (δ = 2), as illustrated
in Fig. 7(b). If any of these additional TEPs meet codebook
membership constraint (1), they are added to the List L, and
the most likely codeword is chosen as the final codeword ĉfinal

(line 18).
To reduce the number of generated additional TEPs,

the maximum Hamming weight of the additional TEPs is
restricted to the Hamming weight of the first TEP [� =
HammingWeight (e)] that satisfied the codebook membership
criterion (1) when combined with ŷ (line 16). Limiting the
Hamming weight of additional TEPs implies that only TEPs
(e) with Hamming weights ≤ � will be generated, as shown
in Fig. 7(c).

C. Parametric Analysis of LGRAND

The LGRAND technique introduces the parameter δ that
influences both the decoding performance and the average
complexity [average number of codebook membership queries
(TEPs)] of the algorithm. It should be noted that the worst case
complexity of LGRAND is the same as that of ORBGRAND,
because the worst case complexity of ORBGRAND and
LGRAND is dependent on the parameters LWmax and HWmax,

Fig. 9. Comparison of decoding performance and average complexity of
different GRAND variants for BCH code (127, 113). (a) FER. (b) Avg.
queries.

which are same for both algorithms (see Section IV-A).
The worst case complexity for ORBGRAND and LGRAND
decoding of linear block codes with lengths n = 127 and
n = 128 is shown in Fig. 8.

Fig. 9 compares the decoding performance and average
complexity of different GRAND variants for decoding BCH
code (127, 113). Furthermore, the ML decoding performance
results [15] are included for reference. The parameter AB =
2 is chosen for the GRANDAB hard-input decoder. As shown
in Fig. 9(a), SGRAND (Queriesmax = 106) outperforms ORB-
GRAND in decoding performance by 0.8 dB at the target FER
of 10−7. However, with the appropriate choice of parameter δ,
the proposed LGRAND technique can bridge the decoding
performance gap between SGRAND and ORBGRAND as
shown in Fig. 9(a).

The effect of changing the value of δ on both the decoding
performance and the average computational complexity for
LGRAND decoding of BCH code (127, 113) at Eb/N0 =
6.5 dB is depicted in Fig. 10. As shown in Fig. 10(a),
increasing the value of parameter δ improves decoding per-
formance [FER at Eb/N0 = 6.5 dB], but it also increases
average computational complexity, as shown in Fig. 10(b).
As a consequence, the appropriate value of parameter δ can
be chosen to strike a balance between decoding performance
and average complexity. At a target FER of 10−7, LGRAND
with parameters (LWmax = 96, HWmax = 8, δ = 25) achieves
error decoding performance comparable to SGRAND and
outperforms ORBGRAND by 0.75 dB, as shown in Fig 9(a).

1) Analyzing Average List Size (|L|avg): The effect of
parameter δ on the average list size (|L|avg) for LGRAND
(LWmax = 96, HWmax = 8, δ = 25) decoding for BCH code
(127, 113) at different Eb/N0 values is depicted in Fig. 11.
Note that at least 100 errors are collected for each value of
parameter δ, and the average list size is plotted in Fig. 11
for various Eb/N0 values. As seen in Fig. 11, the average
list size increases as the value of δ increases for all Eb/N0

values. However, as shown in Fig. 10, increasing the value of
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Fig. 10. Parametric analysis of LGRAND (LWmax, HWmax, δ) for
BCH code (127,113) code (at Eb/N0 = 6.5 dB). (a) FER. (b) Avg. queries.

δ improves decoding performance at the expense of average
computational complexity.

2) Suboptimality Analysis: The ORBGRAND applies
the TEPs in a predetermined LW order as discussed
in Section III-A, and it is obvious from the perfor-
mance difference between the ORBGRAND and SGRAND
decoder—which applies the TEPs in an optimal (ML)
order—that this LW order is not the optimal schedule.
By generating a list of potential candidates during the decod-
ing process and choosing the most likely candidate, the
proposed LGRAND improves the decoding performance of
ORBGRAND.

Suboptimality count refers to the number of instances where
the most likely candidate is not the first on the list (L).
Note that if the selected candidate is the first on the list
(L), the LGRAND will perform similar to the ORBGRAND.
Fig. 12 illustrates the suboptimality count for LGRAND
(LWmax = 96, HWmax = 8, δ = 25) decoding of BCH
code (127, 113). It should be noted that at least 100 errors
were captured at each Eb/N0 point. As observed in Fig. 12,
the suboptimality count increases with higher Eb/N0 values,
revealing the ORBGRAND’s suboptimality and providing an
explanation for the performance improvement achieved by the
proposed LGRAND.

D. Comparison With Enhanced ORBGRAND TEP
Scheduling Schemes

Recently, an improved ORBGRAND TEP scheduling tech-
nique was presented in [25]; this approach generates TEPs
using improved LW order (ILWO) as opposed to the con-
ventional LW order [9]. The TEPs with lower Hamming
weights are given precedence in the ILWO, whereas the
TEPs with higher Hamming weights are penalized. The para-
meter Queriesmax, which indicates the maximum number of
queries allowed, also influences the computational complexity
of the ILWO-ORBGRAND as well as the decoding perfor-
mance [25]. We refer the reader to [25] for more details on the
proposed ILWO TEP schedule and performance/complexity
tradeoffs. Fig. 9(a) illustrates the ORBGRAND decoder with
the ILWO TEP schedule [25], which outperforms the tra-
ditional ORBGRAND decoder [9] by 0.3–0.55 dB at the

Fig. 11. Average list size (|L|avg) for LGRAND [LWmax = 96, HWmax = 8,
� = HW(e)] decoding for BCH code (127, 113).

Fig. 12. Suboptimality count for LGRAND (LWmax = 96, HWmax = 8,
δ = 25) decoding of BCH code (127, 113).

target FER of 10−7. To strike a balance between the decoding
performance and computational complexity, appropriate values
of Queriesmax can be selected.

Note that baseline ORBGRAND and LGRAND TEP sched-
ules allow parallel online computation of TEPs using simple
n × (n − k)-bit shift registers and a network of XOR gates,
as illustrated in Section VI-B. Thus, the proposed LGRAND
presents itself as a viable option for a hardware-friendly
solution to achieve ML decoding performance. In a similar
way, the ORBGRAND-ILWO [25] can also be implemented in
hardware leveraging a network of XOR gates and shift registers
with a few minor modifications.

V. PERFORMANCE EVALUATION

In this section, we evaluate the proposed LGRAND in
terms of decoding performance and computational complex-
ity for distinct classes of channel codes (BCH, CA-Polar,
and CRC). Fig. 13(a) compares the FER performance of
LGRAND with different variants of GRAND for decoding
BCH code (127, 106). In addition, the ML decoding [15]
results are included for reference. Note that the maximum
number of queries (worst case complexity) for the LGRAND
and ORBGRAND decoders is 4.93 × 107 with codes of
length 127, which correspond to the parameters LWmax =
127 and HWmax = 16 (see Fig. 8). Furthermore, for the
numerical simulation results shown in Fig. 13, the parameter
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Fig. 13. Comparison of decoding performance and average complex-
ity of different GRAND variants for BCH code (127, 106). (a) FER.
(b) Avg. queries.

Queriesmax = 5 × 107 is used for SGRAND decoder and
AB = 3 for GRANDAB decoder.

As demonstrated in Fig. 13(a), while both soft-input variants
of GRAND (ORBGRAND and SGRAND) outperform the
hard-input GRANDAB, SGRAND achieves the ML perfor-
mance. The proposed LGRAND (with different parameter
settings) outperforms ORBGRAND in decoding performance
by 0.25–0.7 dB at a target FER of 10−7. Furthermore,
as explained in Section IV-D, these parameters can be tweaked
to match SGRAND’s ML decoding performance. For the
BCH code (127, 106), LGRAND with parameters LWmax =
127, HWmax = 16, and δ = 30 results in a decoding
performance gain of 0.7 dB over ORBGRAND at a tar-
get FER of 10−7 as depicted in Fig. 13(a). Additionally,
as demonstrated in Fig. 13(a), the improved TEP schedule
ORBGRAND-ILWO (Queriesmax = 5× 107) [25] outperforms
the baseline ORBGRAND by 0.6 dB at a target FER of 10−7.
However, as stated in Section IV, the proposed LGRAND,
which is based on the ORBGRAND TEP schedule, is a
suitable choice for parallel hardware implementation since it
supports online parallel TEP generation using shift registers
and a network of XOR gates.

The average computational complexity for different
GRAND variants is shown in Fig. 13(b). Despite the fact that
SGRAND requires the fewest queries of any GRAND variant,
as explained in Section IV, it is not suitable for parallel
hardware implementation. As a result, comparing the number
of queries required by the proposed LGRAND to the number
of queries required by ORBGRAND is reasonable because
both are equally suitable for parallel hardware implementation.

Figs. 14 and 15 compare LGRAND decoding performance,
as well as average computational complexity, with other
GRAND variants for CRC codes [21]. CRC codes are typ-
ically used to detect errors in communication systems and to
assist list-based channel code decoders in selecting the final
candidate codeword. On the other hand, CRC codes can also
be used for error correction using the GRAND algorithm. The
concept of using CRC codes for error correction with GRAND

Fig. 14. Comparison of decoding performance and average complexity of
different GRAND variants for CRC code (128, 104). (a) FER. (b) Avg. queries.

Fig. 15. Comparison of decoding performance and average complexity of
different GRAND variants for CRC code (128, 112). (a) FER. (b) Avg. queries.

decoding was presented in [26] and expanded on in [27]. For
CRC code (128, 104) and CRC code (128, 112), the generator
polynomials are 0xB2B117 and 0x1021, respectively.

The worst case complexity of both LGRAND and ORB-
GRAND decoders, corresponding to parameters (LWmax =
128, HWmax = 16) and (LWmax = 96 and HWmax = 8), with
codes of length 128 is 5.33 × 107 and 3.10 × 106 (see Fig. 8),
respectively. Furthermore, Queriesmax = 5 × 107 is employed
for SGRAND and AB = 3 is selected for GRANDAB in the
numerical simulation results displayed in Fig. 14. Similarly,
for the simulation results shown in Fig. 15, Queriesmax = 3 ×
106 and AB = 2 for the SGRAND and GRANDAB decoders,
respectively.

At the target FER of 10−7, LGRAND (LWmax = 128,
HWmax = 16, δ = 30) achieves similar decoding perfor-
mance to SGRAND (Queriesmax = 5 × 107) for the CRC
code (128, 104) shown in Fig. 14. Similarly, with the CRC
code (128, 112) shown in Fig. 15, LGRAND (LWmax = 96,
HWmax = 8, δ = 24) achieves SGRAND (Queriesmax = 3 ×
106) decoding performance (0.5 dB gain over ORBGRAND
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Fig. 16. Comparison of decoding performance and average complexity
of different GRAND variants for Polar code (128, 105 + 11). (a) FER.
(b) Avg. queries.

at the target FER of 10−7). Furthermore, as illustrated in
Figs. 14 and 15, the proposed LGRAND is compared with
ORBGRAND-ILWO. At the target FER of 10−7, as shown in
Figs. 14 and 15, the proposed LGRAND performs better than
the ORBGRAND-ILWO [25] by 0.1–0.2 dB.

Fig. 16 compares the proposed LGRAND’s decoding perfor-
mance, as well as the required average number of queries, with
different variants of GRAND for decoding 5G NR CA-polar
code (128, 105 + 11). Furthermore, the decoding performance
of state-of-the-art soft-input decoder such as the CA-SCL
decoder [16], [17] is included for reference. Note that for
LGRAND decoding of CA-polar code (128, 105 + 11), the
CRC bits are not used to select the most likely candidate
from the list (L). Instead, we select the most likely candidate
[arg maxĉ∈L p(y|ĉ)] from the list using the ML criterion (see
Section IV-B).

The worst case complexity of the ORBGRAND and
LGRAND decoder, which corresponds to parameters LWmax =
96 and HWmax = 8, is 3.10 × 106 (see Fig. 8) for the
numerical simulation results depicted in Fig. 16. Furthermore,
SGRAND employs Queriesmax = 3 × 106 and the GRANDAB
decoder employs AB = 3.

The LGRAND decoder is also compared with enhanced
ORGBGRAND TEP schedules, ORBGRAND-ILWO [25] and
lookup table (LUT) assisted fixed latency ORBGRAND (F.L.
ORBGRAND) decoder [28], using the same (128, 105) polar
code shown in Fig. 16. At a target FER of 10−7, LGRAND
(LWmax = 96, HWmax = 8, δ = 20) achieves a decoding
performance similar to SGRAND and outperforms traditional
ORBGRAND [9] as well as enhanced TEP schedule ORB-
GRAND (Queriesmax = 213) [25], [28] by ∼ 0.5 dB as shown
in Fig. 16.

To conclude, LGRAND’s parameters (LWmax, HWmax, δ)
can be appropriately chosen for channel codes of different
classes (BCH, CA-Polar, and CRC) to achieve ML decod-
ing performance. Furthermore, the complexity overhead for

Fig. 17. VLSI architecture for checking error patterns with Hamming weight
of 1 (si = H · 1�i , i ∈ [[1 . . n]]).

different LGRAND parameter choices can be explored further
in order to strike a balance between decoding performance
requirements and the complexity/latency budget for a target
application.

VI. VLSI ARCHITECTURE FOR LGRAND

This section describes the proposed VLSI architecture for
LGRAND. For (n, k) linear block codes, VLSI architectures
for GRANDAB and ORBGRAND were proposed in [26]
and [18]. Without going into details, we will briefly explain
the techniques used in [18] and [26] to generate TEPs with
Hamming weights ≥1. By using the parity-check matrix (H)
and the received vector ŷ from the channel, the TEP with
Hamming weight of 1 (e = 1i , i ∈ [[1 . . n]]) can be checked
for codebook membership as

H · ( ŷ ⊕ 1i)
� = H · ŷ� ⊕ H · 1�i (2)

where H · ŷ� (denoted as sc) is the (n − k)-bits syndrome
associated with the received vector ŷ, and H · 1�i (denoted
as si ) is the (n − k)-bits syndrome associated with the error
pattern with Hamming weight of 1 (1i ).

Shift registers are used in [18] and [26] to store syndrome
of error patterns with a Hamming weight of 1 (si ) as shown in
Fig. 17. To test these error patterns, all of the rows of the shift
register (si ) are combined with the syndrome of the received
vector (sc) using a network of XOR gates. Following that, each
of the n syndromes obtained (si ⊕ sc) is NOR reduced and fed
to a priority encoder, which chooses the TEP that meets the
codebook membership criteria (2). Each NOR-reduce output is
1 if and only if all of the bits of the syndromes computed by
(1) are 0.

Furthermore, the proposed GRANDAB [26] and
ORBGRAND [18] decoders use the linearity property
of the underlying code to combine l syndromes of error
patterns with a Hamming weight of 1 (si ) to generate
syndromes corresponding to an error pattern with a Hamming
weight of l (s1,2,...,l = H · 1�1 ⊕ H · 1�2 · · · ⊕ H · 1�l ).
To understand the details of the VLSI implementation that
is used to check error patterns with Hamming weight ≥ 1,
we refer the reader to [18] and [26].

A. VLSI Architecture for Baseline ORBGRAND

Fig. 18 depicts the top-level ORBGRAND VLSI architec-
ture [18], which can decode any linear block code with a
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Fig. 18. VLSI architecture for ORBGRAND [18].

Fig. 19. Proposed LGRAND VLSI architecture.

length of n and code rate R ≥ 0.75. The proposed architecture
takes a vector of channel observation values ( y) as input
and returns the estimated word û as output. Any matrix
can be loaded into (n − k) × n-bit H memory at any time
to support various codes and rates. The hard-demodulated
vector ŷ is subjected to a syndrome check (1) in the first
phase of decoding. If the syndrome (sc) is verified (sc =
0), decoding is presumed to be successful. Otherwise, the
decoding core generates the TEPs (e) in the LW order and
applies them to ŷ, after which the resulting vector ŷ ⊕ e is
checked for codebook membership (1). If any of the tested
syndrome combinations satisfy the parity-check constraint (1),
the 2-D priority encoder is used in conjunction with the
controller module to forward the respective indices to the
word generator module, where P multiplexers are used to
convert the sorted index values to their appropriate bit-flip
locations.

B. Proposed LGRAND VLSI Architecture

Fig. 19 depicts the proposed VLSI architecture for
LGRAND, which builds up on the VLSI architecture for
ORBGRAND [18] and adds module ML computation unit
(MLCU). As described in Section IV-B, the LGRAND selects
the most likely codeword from a list (L) of candidates. In the
proposed LGRAND VLSI architecture, the ORBGRAND
decoder works with the MLCU to select the most likely
codeword.

The proposed MLCU’s microarchitecture is depicted in
Fig. 20. The MLCU takes two inputs, ĉ and n × Q-bit y,
where Q is the quantization width, and outputs the Q +

log2 n�-bit value M. An adder tree with log2 n stages is used
to add the elements ( yi ,∀i ∈ [1, n]) of the y vector to compute
the likelihood M ← ∑n

i=1[(−1)ĉi yi ] [29]. Furthermore,
the components SMto2C and 2CtoSM are used to convert
from sign-magnitude to 2’s complement form to facilitate
signed addition and from 2’s complement to sign-magnitude
representation to facilitate comparison.

Fig. 20. Microarchitecture for MLCU (M←∑n
i=1[(−1)ĉi yi ]).

In the proposed LGRAND VLSI architecture shown in
Fig. 19, the ORBGRAND decoder delivers the estimated
codeword (ĉ) to the MLCU, which computes the likelihood
value M for the estimated codeword (ĉ), then the MLCU
returns M to the ORBGRAND decoder. Note that the list of
estimated candidate codewords (L) is not stored in a separate
memory in the proposed LGRAND hardware; instead, as soon
as an estimated codeword (ĉ) is available at the ORBGRAND
decoder, it is passed to the MLCU.

The decoding core compares the likelihood values of the
currently estimated codeword (Mcurr) and the previously esti-
mated codeword (Mprev). If and only if the Mcurr value is
higher than the Mprev value, the previous estimated codeword
is replaced with the new one. If not, the decoding core
retains the previous estimated codeword. The decoding core
always maintains the estimated codeword with the highest
likelihood by repeating this process for each successive esti-
mated codeword. Finally, the original message (û) is retrieved
from the estimated codeword with the highest likelihood
(ĉfinal ← arg maxĉ∈L

∑n
i=1[(−1)ĉi yi ] [29]) using G−1, and the

decoding process is completed.

C. Implementation Results

The proposed LGRAND with parameters (LW ≤ 96,
HW ≤ 8, δ ≤ 30) has been implemented in Verilog HDL and
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TABLE I

TSMC 65-nm CMOS SYNTHESIS COMPARISON FOR LGRAND
(LW ≤ 96, HW ≤ 8, δ ≤ 30) WITH ORBGRAND (LW ≤ 96,

HW ≤ 8) FOR n = 128/127 AND 0.75 ≤ R ≤ 1

TABLE II

TSMC 65-nm CMOS SYNTHESIS COMPARISON FOR LGRAND (LW≤ 96,
HW ≤ 8, δ ≤ 30) WITH F.L. ORBGRAND [28] DECODER

FOR 5G NR CA-POLAR CODE (128,105+ 11)

synthesized with Synopsys Design Compiler using
general-purpose TSMC 65-nm CMOS technology.
Furthermore, the proposed LGRAND VLSI implementation
is compared to the ORBGRAND [18] VLSI implementation
with parameters (LW ≤ 96, HW ≤ 8), and the synthesis
results for n = 128/127 and code rate R (0.75 ≤ R ≤ 1)
are shown in Table I. Both designs, as shown in Table I,
are validated using test benches generated by the proposed
hardware’s bit-true C model. The input channel LLRs are
quantized on 5 bits, with 1 sign bit and 3 bits for the
fractional part. To ensure accuracy in power measurements,

Fig. 21. Comparison of average latency and average information throughput
for the ORBGRAND [18] VLSI architecture and the proposed LGRAND
VLSI architecture for CRC code (128, 112) and BCH code (127, 113).
(a) Avg. latency. (b) Avg. info. throughput.

switching activities from real test vectors are extracted for
both hardware architectures shown in Table I.

The proposed LGRAND (LW ≤ 96, HW ≤ 8, δ ≤ 30) has a
4.84% area overhead over ORBGRAND (LW≤ 96, HW ≤ 8),
resulting in ∼4.6% less area efficiency than ORBGRAND.
Furthermore, the proposed LGRAND is 7.7%–8.2% less
energy efficient than the ORBGRAND (LW ≤ 96, HW ≤ 8).
However, for decoding CRC code (128, 112), the proposed
LGRAND with parameters (LWmax = 96, HWmax = 8,
δ = 24) outperforms ORBGRAND by 0.5 dB at the target
FER of 10−7, as illustrated in Fig. 15(a). Similarly, as shown
in Fig 9(a), the proposed LGRAND with parameters LWmax =
96, HWmax = 8, and δ = 25 outperforms ORBGRAND by
0.75 dB at a target FER of 10−7 for decoding BCH code
(127, 113).

The proposed LGRAND implementation can support a max-
imum frequency of 454 MHz. One clock cycle corresponds
to one time step because we do not consider any pipelining
technique for the ORBGRAND decoder core. The proposed
LGRAND architecture achieves a worst case information
throughput (W.C. T/P) of 0.5–0.549 Mb/s for different classes
of channel codes as shown in Table I. The average latency,
on the other hand, is significantly smaller than the worst case
latency, especially at the higher Eb/N0 region. The average
latency is computed using the bit-true C model, of the pro-
posed hardware, after taking into account at least 100 frames
in error for each Eb/N0 point. As channel conditions improve,
the average latency for both ORBGRAND and LGRAND
decreases until it reaches only 1 cycle per decoded codeword,
as illustrated in Fig. 21(a), resulting in an average latency
of 2.2 ns (corresponding to a maximum clock frequency of
454 MHz). The average information throughput, which is the
inverse of average latency, is depicted in Fig. 21(b). It should
be noted that the average information throughput increases
with Eb/N0, reaching values of 47.27–51.36 Gb/s.
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The proposed LGRAND hardware is also compared
to a recently proposed state-of-the-art F.L. ORBGRAND
decoder [28], and the comparison results are presented in
Table II. The F.L. ORBGRAND decoder deploys T decoder
pipeline stages and stores the TEPs for the ORBGRAND
decoding process in T−2 Qs × n-bit pattern memories. When
decoding 5G NR CA-Polar code (128, 105 + 11), the F.L.
ORBGRAND decoder can provide a maximum information
throughput of 73.61 Gb/s with a fixed latency of 58.49 ns
owing to the highly pipelined VLSI architecture. The pro-
posed LGRAND hardware, however, can achieve an average
information throughput of 47.7 Gb/s for the same polar code
(128, 105). At the target FER of 10−7, the proposed LGRAND
with parameters (LWmax = 96, HWmax = 8, δ = 20)
outperforms both the ORBGRAND and F.L. ORBGRAND
decoder [28] by ∼0.5 dB and can perform similar to
SGRAND, as depicted in Fig. 16. Note that scaling is not used
to compare LGRAND and F.L. ORBGRAND [28] due to the
vast disparity in the technology nodes employed (65 nm versus
7 nm). The F.L. ORBGRAND [28] and LGRAND decoders
are both code and rate compatible and can decode any code.

VII. CONCLUSION

SGRAND and ORBGRAND are soft-input variants of
GRAND, a universal decoder for short-length and high-rate
codes. SGRAND delivers ML decoding performance but is not
suitable for parallel hardware implementation. ORBGRAND
is suitable for parallel hardware implementation, however
its decoding performance is inferior to SGRAND. In this
article, we introduced LGRAND, a technique for improving
the decoding performance of ORBGRAND. The proposed
LGRAND includes parameters that can be tweaked to match
the decoding performance and complexity budget of a tar-
get application. Furthermore, with the appropriate choice of
parameters, LGRAND achieves decoding performance com-
parable to SGRAND. Numerical simulation results show
that the proposed LGRAND achieves a 0.5–0.75 dB perfor-
mance gain over ORBGRAND for channel codes of different
classes (BCH, CA-Polar, and CRC) at a target FER of 10−7.
LGRAND, like ORBGRAND, lends itself to parallel hard-
ware implementation. According to the VLSI implementation
results, the proposed LGRAND has a 4.84% area overhead
over the ORGRAND hardware implementation. Furthermore,
the proposed LGRAND VLSI architecture can achieve an
average information throughput of 47.27–51.36 Gb/s for linear
block codes of length 127/128 and different code rates.
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