
High-Throughput VLSI Architecture for GRAND
Markov Order

Syed Mohsin Abbas, Marwan Jalaleddine and Warren J. Gross
Department of Electrical and Computer Engineering

McGill University, Montréal, Québec, Canada
Emails: syed.abbas@mail.mcgill.ca, marwan.jalaleddine@mail.mcgill.ca, warren.gross@mcgill.ca

Abstract—Guessing Random Additive Noise Decoding
(GRAND) is a recently proposed Maximum Likelihood (ML)
decoding technique. Irrespective of the structure of the error
correcting code, GRAND tries to guess the noise that corrupted
the codeword in order to decode any linear error-correcting
block code. GRAND Markov Order (GRAND-MO) is a
variant of GRAND that is useful to decode error correcting
code transmitted over communication channels with memory
which are vulnerable to burst noise. Usually, interleavers and
de-interleavers are used in communication systems to mitigate
the effects of channel memory. Interleaving and de-interleaving
introduce undesirable latency, which increases with channel
memory. To prevent this added latency penalty, GRAND-MO
can be directly used on the hard demodulated channel signals.
This work reports the first GRAND-MO hardware architecture
which achieves an average throughput of up to 52 Gbps and 64
Gbps for a code length of 128 and 79 respectively. Compared
to the GRANDAB, hard-input variant of GRAND, the proposed
architecture achieves 3 dB gain in decoding performance for
a target FER of 10−5. Similarly, comparing the GRAND-MO
decoder with a decoder tailored for a (79, 64) BCH code showed
that the proposed architecture achieves 33% higher worst case
throughput and 2 dB gain in decoding performance.

Index Terms—Guessing Random Additive Noise Decoding
(GRAND), Guessing Random Additive Noise Decoding Markov
Order (GRAND-MO), maximum likelihood decoding (MLD),
Burst Errors, Low Latency, VLSI architecture.

I. INTRODUCTION

For 5G and beyond communication networks, ultra-reliable
low-latency communication (URLLC) [1] is a very promising
addition to the pre-existing communication standards [2].
URLLC enables many applications such as augmented and
virtual reality, intelligent transportation systems (ITA) [3],
internet of things (IoT) [4], [5], machine to machine com-
munication and many others [6]. Realizing these applications
requires short high-rate maximum likelihood performing codes
to support the low latency and high reliability requirements
of mission critical events. For such codes, GRAND has been
developed as a maximum likelihood (ML) decoding algorithm
[7]. GRAND attempts to guess the noise that corrupted the
transmitted codeword rather than decoding the received vector
by leveraging the structure of the underlying code. This makes
GRAND a desirable code agnostic decoder as it can be used to
decode any linear block code. GRAND relies on the generation
of putative test error patterns that are successively applied to
the received vector. The order in which these putative test error
patterns are generated is the key difference between different

variants of GRAND. There are hard-input variants of GRAND
(GRANDAB) [7] as well as soft-input variants (ORBGRAND
[8], SRGRAND [9], SGRAND [10]). GRAND Markov Order
(GRAND-MO) [11] is a hard-input GRAND variant designed
specifically for channels with memory which are susceptible
to burst noise. Due to the effect of burst noise, channels with
memory suffer from a significant degradation in decoding
performance with typical channel code decoders, and this
degradation increases with channel memory [11]. As a result,
interleavers/deinterleavers are used to mitigate the effects
of burst noise in order to reduce performance degradation.
Interleavers and deinterleavers, on the other hand, introduce
additional latency. In emerging applications such as URLLC
[1]-[6], where latency and reliability are critical, the delay im-
posed by interleavers/de-interleavers or the performance degra-
dation caused by channel memory is unacceptable. GRAND
Markov Order (GRAND-MO) [11] eliminates the need for
interleavers/deinterleavers for channels with memory, allowing
for effective and reliable communication in the presence of
burst noise. GRAND-MO makes use of noise correlations and
adapts its test error pattern generation to mitigate the effect of
noise bursts. As a result, GRAND-MO outperforms traditional
channel code decoders in the presence of burst noise.

The complexity of GRAND-MO, defined as the maximum
number of codebook membership queries done, is directly
proportional to the number of putative test error patterns. In
this paper, we propose a novel method for generating test error
patterns to reduce the complexity of GRAND-MO decoding.
Furthermore, we propose the first hardware architecture for
GRAND-MO. Considering a code of length 128 and a target
FER of 10−5, the proposed architecture achieves an average
throughput of 52 Gbps, and outperforms GRANDAB [12] by
3 dB. As compared to the (79, 64) BCH code decoder [13], the
proposed VLSI architecture provides 33% higher worst-case
throughput and a 2 dB gain for a target FER of 10−5.

The rest of this paper is organized as follows: Section 2
describes the GRAND-MO algorithm and the channel model
under consideration. Section 3 introduces complexity reduc-
tion techniques for GRAND-MO and their use to develop
the proposed hardware architecture. Additionally, Section 3
presents a comparison of the proposed GRAND-MO architec-
ture with GRANDAB and a newly developed BCH decoder.
Finally, in Section 4, concluding remarks are made.

ar
X

iv
:2

10
8.

12
56

3v
1

 [
cs

.I
T

]
 2

8
A

ug
 2

02
1

II. PRELIMINARIES

A. Notations

Matrices are denoted by a bold upper-case letter (M),
while vectors are denoted with bold lower-case letters (v).
The transpose operator is represented by >. The number of
k-combinations from a given set of n elements is noted by(
n
k

)
. 1n is the indicator vector where all locations except the

nth location are 0 and the nth location is 1. All the indices
start at 1.

B. Channel Model

In this work, the classic two-state Markov chain [14] is used
to model a binary channel with burst noise. When the channel
is in a good state, G, the channel is noiseless; however, when
the channel is in a bad state, B, the channel becomes noisy and
introduces errors. The transition probability from G to B is b,
and the transition probability from B to G is g. Both b and g
are assumed to be known and, in practice, can be estimated. A
burst error is a sequence of consecutive errors introduced by
the channel, with a length that follows a geometric distribution
of mean 1

g and variance 1−g
g2 . The Markov channel’s stationary

bit-flip probability p is b
b+g = Q(

√
2REb

N0
) where R is the

code rate. It should be noted that when p = b, the Markov
channel transforms into a memoryless BSC.

C. GRAND Markov Order

Algorithm 1 summarizes GRAND-MO’s pseudo-code for a
linear (n, k) block code, where n is the code length and k is
the number of information bits. The algorithm’s inputs are r,
b, g and bd2c where r is the received vector of size n and d
is the minimum distance of the code. Moreover, the algorithm
also utilizes the (n − k) × n parity check matrix H of the
code and the n× k matrix G−1, with G being the generator
matrix of the code (G−1 ·G = I).

The error vector is initialized to 0 (line 1) in GRAND-
MO, and ∆l is computed using b and g (line 2). Then, the
test error patterns are generated sequentially by referring to
∆l (line 4). The generated error patterns have m bursts and
have a Hamming weight of l. Finally, r is combined with the
current test error pattern, and the resulting word is queried for
codebook membership by verifying that

H · (r ⊕ e)> (1)

is equal to zero. If the resulting codeword belongs to the
codebook, the message (û) is recovered (line 7). GRAND-
MO decoding is terminated when the number of bursts m in
the generated test error pattern and the Hamming weight l of
the error pattern equal bd2c.

The frame error rate (FER) performance for GRAND-MO
decoding of BCH code (127, 106) in Markov channels is
plotted in Fig. 1. The demodulator provides hard decision
values to the GRAND-MO decoder. It is noted that GRAND-
MO’s performance improves as channel memory increases (g

Algorithm 1: GRAND Markov Order

Input: H , G−1, r, b, g, bd2c
Output: û OR ABANDON

1 e← 0

2 ∆l← b log(b
g)

log(1−g
1−b)
c

3 while H · (r ⊕ e)> 6= 0 do
4 [e, m, l] ←

generateNewMarkovErrorPattern(∆l)
5 if m == bd2c AND l == bd2c then
6 return ABANDON

7 û← (r ⊕ e) ·G−1
8 return û

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10−5

10−4

10−3

10−2

10−1

100

Eb
N0

(dB)

F
E
R

BM Decoder g = 1

BM Decoder g = 0.8

B-M Decoder g = 0.4

B-M Decoder g = 0.2

B-M Decoder g = 0.1

B-M Decoder g = 0.05

B-M Decoder g = 0.025

GRAND-MO g = 1

GRAND-MO g = 0.8

GRAND-MO g = 0.4

GRAND-MO g = 0.2

GRAND-MO g = 0.1

GRAND-MO g = 0.05

GRAND-MO g = 0.025

Fig. 1. Comparison of the GRAND-MO and BCH Berlekamp-Massey (B-M)
decoding performance of BCH code (127, 106) in Markov channels.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10−5

10−4

10−3

10−2

10−1

100

Eb
N0

(dB)

F
E
R

GRANDAB (AB = 3, g = 0.8)
GRANDAB (AB = 3, g = 0.4)
GRANDAB (AB = 3, g = 0.2)
GRAND-MO (g = 0.8)
GRAND-MO (g = 0.4)
GRAND-MO (g = 0.2)
g = 0.8, m = 2, l1 = 32, l2 = 8

g = 0.4, m = 2, l1 = 32, l2 = 16

g = 0.2, m = 2, l1 = 32, l2 = 24

Fig. 2. Comparison of the GRANDAB (AB = 3) and GRAND-MO
decoding performance using RLC code (128, 104) with Markov query order
and proposed query order (g, m, l1, l2).

decreases), while the traditional BCH Berlekamp-Massey (B-
M) decoder [15], [16] shows a degradation in FER perfor-
mance with the increase in channel memory. GRAND-MO’s
performance differs from that of the BCH decoder because

1
2
3
4
5
6

0 5 10 15 20 25 30 35 40 45 50 55 60

1
2
3
4
5
6

0 5 10 15 20 25 30 35 40 45 50 55 60

1
2
3
4
5
6

0 5 10 15 20 25 30 35 40 45 50 55 60

Fig. 3. Test error pattern generation for GRAND-MO for n = 6 and ∆l = 2
(a) Upper: Markov query order (b) Middle: Proposed re-arranged query order
(c) Bottom: Proposed query order with parameters (m = 2, l1 = 4 and
l2 = 3).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10−5

10−4

10−3

10−2

10−1

100

Eb
N0

(dB)

F
E
R

BM Decoder
GRAND-MO Decoder
(m = 2, l1 = 8, l2 = 8)
(m = 2, l1 = 16, l2 = 8)
(m = 2, l1 = 16, l2 = 16)
(m = 2, l1 = 32, l2 = 8)
(m = 2, l1 = 32, l2 = 16)
(m = 2, l1 = 32, l2 = 24)
(m = 2, l1 = 32, l2 = 32)

Fig. 4. Comparison of the GRAND-MO (g = 0.2) decoding performance
using BCH code (127, 106) with Markov query order and proposed query
order with parameters (m, l1, l2).

GRAND-MO adjusts its error pattern generation to mitigate
the impact of noise bursts in the channel.

Similar trends can be observed with Random Linear Codes
(RLCs). RLCs are linear block codes that are theoretically
known to be high-performing [17], [18], but not considered
practical in terms of decodability. Fig. 2 plots the FER
performance for GRAND-MO and GRANDAB [7] decoding
of RLCs of length n = 128. We can observe that with the
decrease in g, GRAND-MO outperforms GRANDAB (AB =
3) decoder in FER performance.

III. VLSI ARCHITECTURE FOR GRAND-MO

We describe the proposed VLSI architecture for GRAND-
MO decoding in this section. Furthermore, we analyse the
error patterns generated by GRAND-MO and suggest simpli-
fications to the test pattern generation process.

A. Test error pattern generation for GRAND-MO

GRAND-MO generates test error patterns in Markov query
order. Fig. 3 (a) depicts the Markov query order for code length
n = 6 and ∆l = 2 where each column corresponds to a
putative error pattern and a dot corresponds to a flipped bit
location. As presented in Fig. 3 (b) and discussed in section

1

1

1

1

Fig. 5. Checking test error patterns corresponding to a noise burst of length
1 ≤ l ≤ n, where s1,2...,l = H · 1>1 ⊕H · 1>2 . . .⊕H · 1>l .

III-B, we propose rearranging these error patterns to simplify
the hardware implementation.

The maximum number of codebook membership queries
(and hence the worst-case complexity) for GRAND-MO de-
coding is determined by ∆l, 1

g , and Eb

N0
. It should be noted

that the average number of codebook membership queries
for GRAND and its variants is far lower than the maximum
number of codebook membership queries. To reduce worst-
case complexity, we suggest restricting the number of bursts m
as well as burst sizes lm for the generated test error patterns.
Figure 3 (c) depicts the generation of a modified test error
pattern with parameters m = 2, l1 = 4 and l2 = 3. In
comparison to the Markov query order, the proposed query
order with parameters (m = 2, l1 = 4 and l2 = 3) reduces
the worst-case complexity from 60 to 46 test error patterns.

The FER performance for GRAND-MO decoding of BCH
code (127, 106) with g = 0.2 is shown in Fig. 4. The per-
formance of the decoder using the proposed query order with
different parameters (m, lm), is compared to the performance
of the decoder with the original Markov query order. The pro-
posed query order with parameters (m = 2, l1 = 32, l2 = 8)
results in a 0.3 dB degradation in FER at 10−5; however, the
maximum number of codebook membership queries is reduced
from 3 530 504 queries required by Markov order to 487 818
queries at Eb

N0
= 8 dB. Similarly, for RLCs, the proposed query

order’s parameters m and lm can be adjusted to match the
FER performance of GRAND-MO with Markov query order
for different lengths, rates, and average burst lengths. Fig. 2
shows the FER performance for GRAND-MO decoding with
the Markov query order and the proposed query order for RLC
code (128, 104).

B. Principle, Scheduling and Details

For a (n, k) linear block code, a VLSI architecture for
GRANDAB (AB=3) decoder was proposed in [12]. The pro-
posed architecture uses n× (n− k)-bit shift registers to store
(n−k)-bit syndromes of 1-bit flip error patterns (si = H ·1>i
with i ∈ J1 . . nK). Moreover, the proposed decoder uses the
linearity property of the underlying code to combine l 1-bit flip
error syndrome to generate an error pattern with the Hamming
weight of l (s1,2...,l = H · 1>1 ⊕H · 1>2 . . . ⊕H · 1>l). By
shifting the data stored in the shift registers, error pattern

(a) Checking all test error patterns corresponding to a single noise burst of size
l ≤ 4 in one time-step

1
2
3
4
5
6

0 5 10 15 20 25 30 35 40 45 50 55

(b) Error patterns corresponding to a single noise burst of size l ≤ 4 (red-
rectangle).

Fig. 6. Checking test error patterns for GRAND-MO decoding corresponding
to proposed query order with parameters (n = 6, m = 2, l1 = 4 and l2 = 3).

XOR gate
Interconnections

(a) Checking all test error patterns corresponding to m = 2 and l1 = 1 with
scomp = sc ⊕ s1.

1
2
3
4
5
6

0 5 10 15 20 25 30 35 40 45 50 55

(b) Error patterns corresponding to m = 2 and l1 = 1 with scomp = sc ⊕ s1
and n = 6 (red-rectangle).

Fig. 7. Checking test error patterns corresponding to proposed query order
for GRAND-MO at time step 2.

syndromes corresponding to different bit flip patterns are
generated. This approach forms the basis for the proposed
GRAND-MO architecture. Since the proposed architecture for
GRANDAB [12] can only generate test error patterns with
Hamming weights ≤ 3, significant improvements are needed
to support generating error patterns with burst lengths l ≥ 3.

Fig. 5 presents the contents of the n × (n − k)-bit shift
register and the associated peripheral circuitry. This structure
is used to generate the test error patterns corresponding to
a noise burst of length l (1 ≤ l ≤ n). Each row of the shift
register stores a syndrome corresponding to a noise burst, such
that the lth row stores the syndrome corresponding to a noise
burst of length l (s1,2...,l = H · 1>1 ⊕H · 1>2 . . .⊕H · 1>l).
Through combining each row of the shift register with the
syndrome of the received vector sc (sc = H · r>) using the

XOR gate
Interconnections

(a) Checking all test error patterns corresponding corresponding to m = 2 and
l1 = 1 with scomp = sc ⊕ s2.

1
2
3
4
5
6

0 5 10 15 20 25 30 35 40 45 50 55

(b) Error patterns corresponding to m = 2 and l1 = 1 with scomp = sc ⊕ s2
and n = 6 (red-rectangle).

Fig. 8. Checking test error patterns corresponding to proposed query order
for GRAND-MO at time step 3.

XOR gate
Interconnections

(a) Checking all test error patterns corresponding to m = 2 and l1 = 2 with
scomp = sc ⊕ s1,2.

1
2
3
4
5
6

0 5 10 15 20 25 30 35 40 45 50 55

(b) Error patterns corresponding to m = 2 and l1 = 2 with scomp = sc⊕s1,2
and n = 6 (red-rectangle).

Fig. 9. Checking test error patterns corresponding to proposed query order
for GRAND-MO at time step 6.

(n−k)-bit-wide XOR gates, we can compute the syndrome of
the test error patterns corresponding to a noise burst of length
l. Each of the n test syndromes is NOR-reduced, to feed an
n-to-log2 n priority encoder. The output of each NOR-reduce
is 1 if and only if all the bits of the syndrome computed by
(1) are 0.

Based on the example presented in Fig. 3 (c), we explain the
VLSI architecture for the proposed query order for GRAND-
MO decoding. An example of the contents of the shift register
and the arrangement of XOR gates is presented in Fig. 6. This
structure is used to generate test error patterns corresponding
to the proposed query order with parameters n = 6, m = 2,
l1 = 4 and l2 = 3. For the sake of clarity, the priority encoder
and its associated signals are omitted in the figure. Due to
the use of a specific arrangement of shift register and XOR
gates, all the error patterns corresponding to a single noise
burst (m = 1) of size l ≤ 4 are checked (1) in a single time
step as presented in Fig. 6 (b).

To generate the test error patterns corresponding to m > 1,
a controller is used in conjunction with the shift register. Fig.
7 shows the contents of the shift register and the syndrome
that is outputted by the controller, which is denoted as scomp,

Word
Generator

Decoder
Core

H
Memory

Controller

Fig. 10. Proposed VLSI Architecture for GRAND-MO.

to generate test error patterns corresponding to m = 2 and
l1 = 1. The shift register is shifted-up by 2 positions and the
controller outputs scomp = sc ⊕ s1. Hence, all the test error
patterns with scomp = sc ⊕ s1 are checked in one time step.
At the next time step, the controller outputs scomp = sc ⊕ s2
and the shift register is shifted up by 1 position. This allows
us to generate all the test error patterns, with scomp = sc⊕ s2
as shown in Fig. 8. Therefore, for a code length of n, n −
2 time steps are required to generate all test error patterns
corresponding to m = 2 and l1 = 1 where shift register is
shifted up by 1 in each time step.

Similarly, to generate test error patterns corresponding to
m = 2 and l1 = 2, the shift register is reset and shifted-up by 3
positions. In this position, the controller outputs scomp = sc⊕
s1⊕s2 as shown in Fig. 9. A total number of n−3 time steps
are required to generate all test error patterns corresponding
to m = 2 and l1 = 2 since the shift register is shifted up
by 1 in each time step. In summary, for the proposed VLSI
architecture, the number of required time steps to check all
the error patterns corresponding to the proposed query order
with parameters (n,m = 2, L = min(l1, l2)]) is given by:

L× (
2× n− L− 3

2
) + 2. (2)

The proposed VLSI architecture for GRAND-MO is pre-
sented in Fig. 10. For clarity, the control and clock signals
are not shown. The proposed architecture takes r as input
and generates the estimated word as output û. At any time,
to support any code, given the length and rate constraints,
an H matrix can be loaded into the H memory. To begin, a
syndrome check is performed on r to determine whether the
received vector is a valid codeword. If the syndrome is verified,
decoding is assumed to be successful and we terminate by
outputting û = r. Otherwise, the decoding core applies test
error patterns in the proposed query order until one of the
test error pattern verifies the parity check constraint (1). After
verifying that the resulting codeword belongs to the codebook,
the controller module forwards the respective indices to the
word generator module which translates these index values to
their correct bit flip locations.

C. Implementation Results

The proposed GRAND-MO architecture with parameters
(m = 2, l1 ≤ 32 and l2 ≤ 32), has been implemented in Ver-
ilog HDL and synthesized using Synopsys Design Compiler

0 1 2 3 4 5 6 7 8 9 10 11 12
10−5

10−4

10−3

10−2

10−1

100

Eb
N0

(dB)

F
E
R

BCH Decoder
GRAND-MO Markov query order
GRAND-MO l1 = 8, l2 = 0

GRAND-MO l1 = 16, l2 = 0

GRAND-MO l1 = 4, l2 = 4

GRAND-MO l1 = 8, l2 = 8

GRAND-MO l1 = 16, l2 = 8

Fig. 11. Comparison of the GRAND-MO decoding and BCH (PGZ) decoding
performance for BCH code (79, 64) in Markov channels (g = 0.4).

with general-purpose TSMC 65 nm CMOS technology. The
design has been verified using test benches generated via the
bit-true C model of the proposed hardware. Table I presents
the synthesis results for the proposed decoder with n = 128,
code rates between 0.75 and 1.

The GRAND-MO implementation can support a maximum
frequency of 500 MHz. Since no pipelining strategy is used,
one clock cycle corresponds to one time-step. For n = 128
and parameters (m = 2, l1 ≤ 32 and l2 ≤ 32) 3 538
cycles (2) are required in the worst-case (W.C.) scenario,
resulting in a W.C. latency of 7.0 µs. The average latency,
however, is only 2 ns at target FER of 10−5, which results in
an average decoding information throughput of 52 Gbps for
the (128,104) RLC code presented in Fig. 2. The proposed
GRAND-MO decoder has a 2.8× area overhead as com-
pared to the hard decision-based GRANDAB decoder (AB=3)
[12]. The average decoding throughput for both the proposed
GRANDMO and GRANDAB decoder [12] is comparable. The
proposed GRAND-MO decoder, on the other hand, has 13.6%
lower W.C. latency, resulting in 13.6% higher W.C. decoding
throughput. Furthermore, as seen in Fig. 2. GRAND-MO’s
decoding performance with parameters (g = 0.4, m = 2,
l1 = 32, and l2 = 16) outperforms GRANDAB decoder by at
least 3 dB for target FERs less than 10−5.

Recently, a high throughput VLSI architecture for a (79, 64)
BCH code decoder based on the Peterson-Gorenstein–Zierler

TABLE I
TSMC 65 NM CMOS IMPLEMENTATION COMPARISON FOR GRANDAB

WITH GRAND-MO FOR n = 128.

GRANDAB [12] GRAND-MO

Parameters AB = 3 m = 2, l1 ≤ 32 and l2 ≤ 32
Technology (nm) 65 65
Supply (V) 0.9 0.9
Max. Frequency (MHz) 500 500
Area (mm2) 0.25 0.71
W.C. Latency (ns) 8196 7076
Avg. Latency (ns) 2 2
W.C. T/P (Mbps) 12.68 14.69
Avg. T/P (Gbps) 52 52
Code compatible Yes Yes
Rate compatible Yes Yes

TABLE II
TSMC 65 NM CMOS IMPLEMENTATION COMPARISON FOR BCH

DECODER WITH GRAND-MO (m = 1, l1 ≤ 16 AND l2 = 0) FOR n = 79.

GRAND-MO (79,64) BCH decoder [13]

Technology (nm) 65 65
Supply (V) 1.1 1.2
Max. Frequency (GHz) 1 N/A
Area (µm2) 225 964 3 264
W.C. Latency (ns) 2 3
Avg. Latency (ns) 1 1.1
W.C. T/P (Gbps) 32 21.3
Avg. T/P (Gbps) 64 58.2
Code compatible Yes No
Rate compatible Yes No

(PGZ) algorithm [19] was proposed in [13]. The decoding
performance of the (79,64) BCH PGZ decoder is compared
with that of GRAND-MO decoding in Fig. 11. As seen in Fig.
11, GRAND-MO with proposed query order and parameters
(m = 1, l1 = 16 and l2 = 0) outperforms BCH decoder by 2
dB for target FER of 10−5

Table II compares the implementation results for GRAND-
MO (m = 1, l1 ≤ 16, and l2 = 0) and the BCH decoder
in [13]. For n = 79 and (m = 1, l1 = 16, and l2 = 0),
2 cycles (2) are required in the W.C. scenario. Even though
the proposed decoder is 69× bigger than the PGZ decoder
in [13], the W.C. latency is reduced by 33% resulting in a
W.C throughput of 32 Gbps. For target FER of 10−5, the
proposed decoder exhibits a slightly better minimum latency
and achieves an information throughput of 64 Gbps, while the
BCH decoder is limited to 58 Gbps. In addition, the proposed
GRAND-MO architecture can decode any code with n = 79
and R ≥ 0.75, while [13] can only decode the (79,64) BCH
code.

IV. CONCLUSION

In this paper, we propose the first hardware architecture
for the GRAND-MO algorithm. GRAND-MO is a GRAND
variant that is used to decode linear block codes on communi-
cation channels with memory. Since GRAND is code-agnostic,
the proposed GRAND-MO architecture will decode any error
correcting code provided the length and rate constraints. We
suggest modifications in the GRAND-MO algorithm to sim-
plify the hardware implementation and reduce the complexity

of the decoding process. The results of ASIC synthesis show
that with a code length of 128 and a target FER of 10−5, an
average information throughput of 52 Gbps and a 3 dB gain in
decoding performance can be achieved when compared to the
GRANDAB (AB=3) decoder. Moreover, compared with the
BCH decoder tailored for a (79,64) code, the proposed VLSI
implementation achieves 33% higher worst-case throughput
while also providing a 2 dB gain in decoding performance
for a target FER of 10−5. In addition to that, the average
throughput for the same parameters can reach up to 64 Gbps.
This proposed architecture paves the way for future soft-input
GRAND-MO implementations.

REFERENCES

[1] G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultrareliable, and
low-latency wireless communication with short packets,” Proceedings of
the IEEE, vol. 104, no. 9, pp. 1711–1726, 2016.

[2] 3GPP, “Study on physical layer enhancements for NR ultrareliable
and low latency case (URLLC),” http://www.3gpp.org/DynaReport/
38-series.htm, Tech. Rep. TR 38.824, 2018, Rel. 16.

[3] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey
on low latency towards 5g: Ran, core network and caching solutions,”
IEEE Communications Surveys Tutorials, vol. 20, no. 4, pp. 3098–3130,
2018.

[4] Z. Ma, M. Xiao, Y. Xiao, Z. Pang, H. V. Poor, and B. Vucetic, “High-
reliability and low-latency wireless communication for internet of things:
Challenges, fundamentals, and enabling technologies,” IEEE Internet of
Things Journal, vol. 6, no. 5, pp. 7946–7970, 2019.

[5] M. Zhan, Z. Pang, D. Dzung, and M. Xiao, “Channel coding for
high performance wireless control in critical applications: Survey and
analysis,” IEEE Access, vol. 6, pp. 29 648–29 664, 2018.

[6] H. Chen, R. Abbas, P. Cheng, M. Shirvanimoghaddam, W. Hardjawana,
W. Bao, Y. Li, and B. Vucetic, “Ultra-reliable low latency cellular
networks: Use cases, challenges and approaches,” IEEE Communications
Magazine, vol. 56, no. 12, pp. 119–125, 2018.

[7] K. R. Duffy, J. Li, and M. Médard, “Capacity-achieving guessing
random additive noise decoding,” IEEE Transactions on Information
Theory, vol. 65, no. 7, pp. 4023–4040, 2019.

[8] K. R. Duffy, “Ordered reliability bits guessing random additive noise
decoding,” arXiv preprint arXiv:2001.00546, 2020.

[9] K. R. Duffy and M. Médard, “Guessing random additive noise decoding
with soft detection symbol reliability information - sgrand,” in 2019
IEEE International Symposium on Information Theory (ISIT), 2019, pp.
480–484.

[10] A. Solomon, K. R. Duffy, and M. Médard, “Soft maximum likelihood
decoding using GRAND,” arXiv preprint arXiv:2001.03089, 2020.

[11] W. An, M. Médard, and K. R. Duffy, “Keep the bursts and ditch the in-
terleavers,” in GLOBECOM 2020 - 2020 IEEE Global Communications
Conference, 2020, pp. 1–6.

[12] S. M. Abbas, T. Tonnellier, F. Ercan, and W. J. Gross, “High-throughput
VLSI architecture for GRAND,” in 2020 IEEE Workshop on Signal
Processing Systems (SiPS), 2020, pp. 1–6.

[13] S. Choi, H. K. Ahn, B. K. Song, J. P. Kim, S. H. Kang, and S. Jung,
“A decoder for short BCH codes with high decoding efficiency and low
power for emerging memories,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 27, no. 2, pp. 387–397, 2019.

[14] E. N. Gilbert, “Capacity of a burst-noise channel,” The Bell System
Technical Journal, vol. 39, no. 5, pp. 1253–1265, 1960.

[15] E. Berlekamp, “Nonbinary BCH decoding (abstr.),” IEEE Transactions
on Information Theory, vol. 14, no. 2, pp. 242–242, 1968.

[16] J. Massey, “Shift-register synthesis and BCH decoding,” IEEE Transac-
tions on Information Theory, vol. 15, no. 1, pp. 122–127, 1969.

[17] R. G. Gallager, “Information theory and reliable communication,” 1968.
[18] J. Coffey and R. Goodman, “Any code of which we cannot think is

good,” IEEE Transactions on Information Theory, vol. 36, no. 6, pp.
1453–1461, 1990.

[19] W. W. Peterson, “Encoding and error-correction procedures for the Bose-
Chaudhuri codes,” IRE Trans. Inf. Theory, vol. IT-6, no. 1, pp. 459–470,
1960.

http://www.3gpp.org/DynaReport/38-series.htm
http://www.3gpp.org/DynaReport/38-series.htm

	I Introduction
	II Preliminaries
	II-A Notations
	II-B Channel Model
	II-C GRAND Markov Order

	III VLSI Architecture for GRAND-MO
	III-A Test error pattern generation for GRAND-MO
	III-B Principle, Scheduling and Details
	III-C Implementation Results

	IV Conclusion
	References

